Suppr超能文献

使用带有知识蒸馏的预训练语言模型自动分配放射学检查方案

Automatic Assignment of Radiology Examination Protocols Using Pre-trained Language Models with Knowledge Distillation.

作者信息

Lau Wilson, Aaltonen Laura, Gunn Martin, Yetisgen Meliha

机构信息

Department of Biomedical and Health Informatics.

Department of Radiology.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:668-676. eCollection 2021.

Abstract

Selecting radiology examination protocol is a repetitive, and time-consuming process. In this paper, we present a deep learning approach to automatically assign protocols to computed tomography examinations, by pre-training a domain-specific BERT model (BERT). To handle the high data imbalance across exam protocols, we used a knowledge distillation approach that up-sampled the minority classes through data augmentation. We compared classification performance of the described approach with n-gram models using Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Random Forest (RF) classifiers, as well as the BERT model. SVM, GBM and RF achieved macro-averaged F1 scores of 0.45, 0.45, and 0.6 while BERT and BERT achieved 0.61 and 0.63. Knowledge distillation boosted performance on the minority classes and achieved an F1 score of 0.66.

摘要

选择放射学检查方案是一个重复且耗时的过程。在本文中,我们提出了一种深度学习方法,通过预训练特定领域的BERT模型(BERT)来自动为计算机断层扫描检查分配方案。为了处理不同检查方案之间的数据高度不平衡问题,我们使用了一种知识蒸馏方法,通过数据增强对少数类别进行上采样。我们将所描述方法的分类性能与使用支持向量机(SVM)、梯度提升机(GBM)和随机森林(RF)分类器的n-gram模型以及BERT模型进行了比较。SVM、GBM和RF的宏平均F1分数分别为0.45、0.45和0.6,而BERT和BERT分别为0.61和0.63。知识蒸馏提高了少数类别的性能,F1分数达到了0.66。

相似文献

4
Evaluation of a BERT Natural Language Processing Model for Automating CT and MRI Triage and Protocol Selection.
Can Assoc Radiol J. 2025 May;76(2):265-272. doi: 10.1177/08465371241255895. Epub 2024 Jun 4.
5
Machine learning based natural language processing of radiology reports in orthopaedic trauma.
Comput Methods Programs Biomed. 2021 Sep;208:106304. doi: 10.1016/j.cmpb.2021.106304. Epub 2021 Jul 23.
6
Qualifying Certainty in Radiology Reports through Deep Learning-Based Natural Language Processing.
AJNR Am J Neuroradiol. 2021 Oct;42(10):1755-1761. doi: 10.3174/ajnr.A7241. Epub 2021 Aug 19.
7
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.
9
Machine Learning for Automation of Radiology Protocols for Quality and Efficiency Improvement.
J Am Coll Radiol. 2020 Sep;17(9):1149-1158. doi: 10.1016/j.jacr.2020.03.012. Epub 2020 Apr 9.
10
Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports.
J Am Coll Radiol. 2019 Mar;16(3):336-343. doi: 10.1016/j.jacr.2018.10.020. Epub 2018 Dec 29.

引用本文的文献

2
Abdominal and Pelvic MRI Protocol Prediction Using Natural Language Processing.
J Imaging Inform Med. 2025 Jan 30. doi: 10.1007/s10278-025-01395-9.
4
Upstream Machine Learning in Radiology.
Radiol Clin North Am. 2021 Nov;59(6):967-985. doi: 10.1016/j.rcl.2021.07.009.

本文引用的文献

1
Relation Extraction from Clinical Narratives Using Pre-trained Language Models.
AMIA Annu Symp Proc. 2020 Mar 4;2019:1236-1245. eCollection 2019.
2
Machine Learning for Automation of Radiology Protocols for Quality and Efficiency Improvement.
J Am Coll Radiol. 2020 Sep;17(9):1149-1158. doi: 10.1016/j.jacr.2020.03.012. Epub 2020 Apr 9.
3
Supervised and unsupervised language modelling in Chest X-Ray radiological reports.
PLoS One. 2020 Mar 10;15(3):e0229963. doi: 10.1371/journal.pone.0229963. eCollection 2020.
4
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
5
Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.
J Am Med Inform Assoc. 2018 May 1;25(5):568-571. doi: 10.1093/jamia/ocx125.
7
Quantifying the Impact of Noninterpretive Tasks on Radiology Report Turn-Around Times.
J Am Coll Radiol. 2017 Nov;14(11):1498-1503. doi: 10.1016/j.jacr.2017.07.023. Epub 2017 Sep 13.
8
A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.
Acad Radiol. 2017 Feb;24(2):160-166. doi: 10.1016/j.acra.2016.09.013. Epub 2016 Nov 23.
9
Radiology Workflow Disruptors: A Detailed Analysis.
J Am Coll Radiol. 2016 Oct;13(10):1210-1214. doi: 10.1016/j.jacr.2016.04.009. Epub 2016 Jun 14.
10
Dynamic sampling approach to training neural networks for multiclass imbalance classification.
IEEE Trans Neural Netw Learn Syst. 2013 Apr;24(4):647-60. doi: 10.1109/TNNLS.2012.2228231.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验