IEEE Trans Image Process. 2014 Jul;23(7):2842-53. doi: 10.1109/TIP.2014.2321501. Epub 2014 May 2.
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
本文介绍了 QR 图像的概念,这是一种将 QR 码自动嵌入彩色图像的方法,其检测错误的概率是有界的。这些嵌入与标准的解码应用程序兼容,可以应用于任何具有全覆盖面积的彩色图像。QR 信息位被编码到图像的亮度值中,利用 QR 读取器对局部亮度干扰的免疫力。为了减轻 QR 图像的视觉失真,该算法利用半色调掩模来选择修改的像素,并使用非线性规划技术来局部优化亮度水平。开发了一种用于错误概率的可处理模型,并在用于优化 QR 图像亮度水平的质量度量中考虑了人类视觉系统的模型。为了最小化处理时间,所提出的优化技术考虑了常见二值化方法的力学特性,并设计为适合并行实现。实验结果表明,随着嵌入参数的变化,解码率和感知质量逐渐下降。还展示了所提出的方法与现有方法之间的视觉比较。