Suppr超能文献

基于距离保持的降维的流形值医学图像的感知可视化。

Perception-based visualization of manifold-valued medical images using distance-preserving dimensionality reduction.

机构信息

Medical Image Analysis Laboratory, School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

IEEE Trans Med Imaging. 2011 Jul;30(7):1314-27. doi: 10.1109/TMI.2011.2111422. Epub 2011 Feb 4.

Abstract

A method for visualizing manifold-valued medical image data is proposed. The method operates on images in which each pixel is assumed to be sampled from an underlying manifold. For example, each pixel may contain a high dimensional vector, such as the time activity curve (TAC) in a dynamic positron emission tomography (dPET) or a dynamic single photon emission computed tomography (dSPECT) image, or the positive semi-definite tensor in a diffusion tensor magnetic resonance image (DTMRI). A nonlinear mapping reduces the dimensionality of the pixel data to achieve two goals: distance preservation and embedding into a perceptual color space. We use multidimensional scaling distance-preserving mapping to render similar pixels (e.g., DT or TAC pixels) with perceptually similar colors. The 3D CIELAB perceptual color space is adopted as the range of the distance preserving mapping, with a final similarity transform mapping colors to a maximum gamut size. Similarity between pixels is either determined analytically as geodesics on the manifold of pixels or is approximated using manifold learning techniques. In particular, dissimilarity between DTMRI pixels is evaluated via a Log-Euclidean Riemannian metric respecting the manifold of the rank 3, second-order positive semi-definite DTs, whereas the dissimilarity between TACs is approximated via ISOMAP. We demonstrate our approach via artificial high-dimensional, manifold-valued data, as well as case studies of normal and pathological clinical brain and heart DTMRI, dPET, and dSPECT images. Our results demonstrate the effectiveness of our approach in capturing, in a perceptually meaningful way, important features in the data.

摘要

提出了一种可视化流形值医学图像数据的方法。该方法适用于假定每个像素都从底层流形中采样的图像。例如,每个像素可以包含一个高维向量,例如动态正电子发射断层扫描(dPET)或动态单光子发射计算机断层扫描(dSPECT)图像中的时间活动曲线(TAC),或扩散张量磁共振成像(DTMRI)中的正定半定张量。非线性映射降低像素数据的维数以实现两个目标:距离保持和嵌入感知颜色空间。我们使用多维尺度距离保持映射来渲染相似的像素(例如,DT 或 TAC 像素),使其具有感知相似的颜色。采用 3D CIELAB 感知颜色空间作为距离保持映射的范围,最终相似变换将颜色映射到最大色域大小。像素之间的相似性要么通过像素流形上的测地线进行分析确定,要么使用流形学习技术进行近似。特别是,通过尊重秩 3、二阶正定半定 DT 的流形的对数欧几里得黎曼度量来评估 DTMRI 像素之间的差异,而 TAC 之间的差异则通过 ISOMAP 进行近似。我们通过人工高维、流形值数据以及正常和病理临床大脑和心脏 DTMRI、dPET 和 dSPECT 图像的案例研究来展示我们的方法。我们的结果表明,我们的方法在以感知有意义的方式捕捉数据中的重要特征方面是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验