IEEE Trans Neural Netw Learn Syst. 2013 Aug;24(8):1304-15. doi: 10.1109/TNNLS.2013.2250300.
The ν-support vector machine ( ν-SVM) for classification has the advantage of using a parameter ν on controlling the number of support vectors and margin errors. Recently, an interesting accurate on-line algorithm accurate on-line ν-SVM algorithm (AONSVM) is proposed for training ν-SVM. AONSVM can be viewed as a special case of parametric quadratic programming techniques. It is demonstrated that AONSVM avoids the infeasible updating path as far as possible, and successfully converges to the optimal solution based on experimental analysis. However, because of the differences between AONSVM and classical parametric quadratic programming techniques, there is no theoretical justification for these conclusions. In this paper, we prove the feasibility and finite convergence of AONSVM under two assumptions. The main results of feasibility analysis include: 1) the inverses of the two key matrices in AONSVM always exist; 2) the rules for updating the two key inverse matrices are reliable; 3) the variable ζ can control the adjustment of the sum of all the weights efficiently; and 4) a sample cannot migrate back and forth in successive adjustment steps among the set of margin support vectors, the set of error support vectors, and the set of the remaining vectors. Moreover, the analyses of AONSVM also provide the proofs of the feasibility and finite convergence for accurate on-line C-SVM learning directly.
ν-支持向量机(ν-SVM)在分类中具有使用参数 ν 控制支持向量和边界错误数量的优势。最近,提出了一种有趣的准确在线 ν-SVM 算法(AONSVM),用于训练 ν-SVM。AONSVM 可以看作是参数二次规划技术的一种特殊情况。通过实验分析证明,AONSVM 尽可能避免不可行的更新路径,并成功收敛到最优解。然而,由于 AONSVM 与经典参数二次规划技术之间的差异,这些结论没有理论依据。在本文中,我们在两个假设下证明了 AONSVM 的可行性和有限收敛性。可行性分析的主要结果包括:1)AONSVM 中的两个关键矩阵的逆总是存在;2)更新两个关键逆矩阵的规则是可靠的;3)变量 ζ 可以有效地控制所有权重的调整;4)在连续调整步骤中,一个样本不能在边界支持向量集、错误支持向量集和剩余向量集之间来回迁移。此外,AONSVM 的分析也直接为准确在线 C-SVM 学习的可行性和有限收敛性提供了证明。