Gu Bin, Xiong Ziran, Li Xiang, Zhai Zhou, Zheng Guansheng
IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):490-501. doi: 10.1109/TNNLS.2021.3097248. Epub 2023 Jan 5.
It is well known that the performance of a kernel method is highly dependent on the choice of kernel parameter. However, existing kernel path algorithms are limited to plain support vector machines (SVMs), which has one equality constraint. It is still an open question to provide a kernel path algorithm to ν -support vector classification ( ν -SVC) with more than one equality constraint. Compared with plain SVM, ν -SVC has the advantage of using a regularization parameter ν for controlling the number of support vectors and margin errors. To address this problem, in this article, we propose a kernel path algorithm (KP ν SVC) to trace the solutions of ν -SVC exactly with respect to the kernel parameter. Specifically, we first provide an equivalent formulation of ν -SVC with two equality constraints, which can avoid possible conflicts during tracing the solutions of ν -SVC. Based on this equivalent formulation of ν -SVC, we propose the KP ν SVC algorithm to trace the solutions with respect to the kernel parameter. However, KP ν SVC traces nonlinear solutions of kernel method rather than the errors of loss function, and it is still a challenge to provide the algorithm that guarantees to find the global optimal model. To address this challenging problem, we extend the classical error path algorithm to the nonlinear kernel solution paths and propose a new kernel error path (KEP) algorithm that ensures to find the global optimal kernel parameter by minimizing the cross validation error. We also provide the finite convergence analysis and computational complexity analysis to KP ν SVC and KEP. Extensive experimental results on a variety of benchmark datasets not only verify the effectiveness of KP ν SVC but also show the advantage of applying KEP to select the optimal kernel parameter.
众所周知,核方法的性能高度依赖于核参数的选择。然而,现有的核路径算法仅限于具有一个等式约束的普通支持向量机(SVM)。为具有多个等式约束的ν -支持向量分类(ν -SVC)提供一种核路径算法仍然是一个未解决的问题。与普通SVM相比,ν -SVC具有使用正则化参数ν来控制支持向量的数量和边缘误差的优势。为了解决这个问题,在本文中,我们提出了一种核路径算法(KP ν SVC),以精确跟踪ν -SVC关于核参数的解。具体来说,我们首先给出了具有两个等式约束的ν -SVC的等价形式,这可以避免在跟踪ν -SVC的解时可能出现的冲突。基于这种ν -SVC的等价形式,我们提出了KP ν SVC算法来跟踪关于核参数的解。然而,KP ν SVC跟踪的是核方法的非线性解而不是损失函数的误差,提供保证找到全局最优模型的算法仍然是一个挑战。为了解决这个具有挑战性的问题,我们将经典的误差路径算法扩展到非线性核解路径,并提出了一种新的核误差路径(KEP)算法,该算法通过最小化交叉验证误差来确保找到全局最优核参数。我们还对KP ν SVC和KEP进行了有限收敛性分析和计算复杂度分析。在各种基准数据集上的大量实验结果不仅验证了KP ν SVC的有效性,还展示了应用KEP选择最优核参数的优势。