IEEE Trans Neural Netw Learn Syst. 2013 Sep;24(9):1484-91. doi: 10.1109/TNNLS.2013.2258936.
In a recent paper, we developed a novel quantized kernel least mean square algorithm, in which the input space is quantized (partitioned into smaller regions) and the network size is upper bounded by the quantization codebook size (number of the regions). In this paper, we propose the quantized kernel least squares regression, and derive the optimal solution. By incorporating a simple online vector quantization method, we derive a recursive algorithm to update the solution, namely the quantized kernel recursive least squares algorithm. The good performance of the new algorithm is demonstrated by Monte Carlo simulations.
在最近的一篇论文中,我们提出了一种新的量化核最小均方算法,其中输入空间被量化(划分为更小的区域),并且网络大小由量化码本大小(区域数量)来上界。在本文中,我们提出了量化核最小二乘回归,并推导出了最优解。通过结合一种简单的在线向量量化方法,我们推导出一种递归算法来更新解,即量化核递归最小二乘算法。新算法的良好性能通过蒙特卡罗模拟得到了验证。