Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France.
1] Theoretical Chemistry and Biology, School of Biotechnology, KTH, Royal Institute of Technology, S-106 91 Stockholm, Sweden [2].
Nat Commun. 2014 May 9;5:3816. doi: 10.1038/ncomms4816.
Due to the generally delocalized nature of molecular valence orbitals, valence-shell spectroscopies do not usually allow to specifically target a selected atom in a molecule. However, in X-ray electron spectroscopy, the photoelectron momentum is large and the recoil angular momentum transferred to the molecule is larger when the photoelectron is ejected from a light atom compared with a heavy one. This confers an extreme sensitivity of the rotational excitation to the ionization site. Here we show that, indeed, the use of high-energy photons to photoionize valence-shell electrons of hydrogen chloride offers an unexpected way to decrypt the atomic composition of the molecular orbitals due to the rotational dependence of the photoionization profiles. The analysis of the site-specific rotational envelopes allows us to disentangle the effects of the two main mechanisms of rotational excitation, based on angular momentum exchange between the molecule and either the incoming photon or the emitted electron.
由于分子价轨道通常是离域的,价层光谱通常不能专门针对分子中的选定原子。然而,在 X 射线电子能谱中,当光电子从轻原子中被逐出时,光电子的动量较大,分子所传递的反冲角动量也较大。这使得分子轨道的旋转激发对电离位点具有极高的灵敏度。在这里,我们确实表明,使用高能光子来光解氯化氢的价层电子,由于光离化轮廓的旋转依赖性,提供了一种解密分子轨道原子组成的意外方法。对特定于站点的旋转包络的分析使我们能够根据分子与入射光子或发射电子之间的角动量交换,分离出两种主要的旋转激发机制的影响。