Suppr超能文献

蓖麻贝壳杉烯合酶(类)家族的生化特性支持二萜环化的量子化学观点。

Biochemical characterization of the castor bean ent-kaurene synthase(-like) family supports quantum chemical view of diterpene cyclization.

作者信息

Jackson Alana J, Hershey David M, Chesnut Taylor, Xu Meimei, Peters Reuben J

机构信息

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.

出版信息

Phytochemistry. 2014 Jul;103:13-21. doi: 10.1016/j.phytochem.2014.04.005. Epub 2014 May 5.

Abstract

It has become apparent that plants have extensively diversified their arsenal of labdane-related diterpenoids (LRDs), in part via gene duplication and neo-functionalization of the ancestral ent-kaurene synthase (KS) required for gibberellin metabolism. For example, castor bean (Ricinus communis) was previously shown to produce an interesting set of biosynthetically related diterpenes, specifically ent-sandracopimaradiene, ent-beyerene, and ent-trachylobane, in addition to ent-kaurene, using four separate diterpene synthases, albeit these remain unidentified. Notably, despite mechanistic similarity of the underlying reaction to that catalyzed by KSs, ent-beyerene and ent-trachylobane synthases have not yet been identified. Given our interest in LRD biosynthesis, and the recent availability of the castor bean genome sequence, a synthetic biology approach was applied to biochemically characterize the four KS(-like) enzymes [KS(L)s] found in Ricinus communis [i.e., the RcKS(L)s]. In particular, using bacteria engineered to produce the relevant ent-copalyl diphosphate precursor and synthetic genes based on the predicted RcKS(L)s, although this ultimately required correction of a "splicing" error in one of the predicted genes, highlighting the dependence of such a synthetic biology approach on accurate gene sequences. Nevertheless, it is possible to assign each of the four RcKS(L)s to one of the previously observed diterpene synthase activities, providing access to functionally enzymes. Intriguingly, the product distribution of the RcKS(L)s seems to support the distinct diterpene synthase reaction mechanism proposed by quantum chemical calculations, rather than the classically proposed pathway.

摘要

很明显,植物已经广泛地多样化了它们与半日花烷相关的二萜类化合物(LRD)库,部分是通过赤霉素代谢所需的祖先内贝壳杉烯合酶(KS)的基因复制和新功能化实现的。例如,之前的研究表明蓖麻(Ricinus communis)除了能产生内贝壳杉烯外,还能利用四种不同的二萜合酶产生一组有趣的生物合成相关二萜,具体为内半日花二烯、内贝壳杉烯和内盘状贝壳杉烯,尽管这些酶尚未被鉴定出来。值得注意的是,尽管内贝壳杉烯和内盘状贝壳杉烯合酶所催化的反应在机制上与KS所催化的反应相似,但它们尚未被鉴定出来。鉴于我们对LRD生物合成的兴趣,以及最近蓖麻基因组序列的可得性,我们采用了合成生物学方法对蓖麻中发现的四种KS(类)酶[KS(L)s]进行生化表征[即RcKS(L)s]。特别是,利用经过工程改造以产生相关内贝壳杉烯二磷酸前体的细菌和基于预测的RcKS(L)s的合成基因,尽管这最终需要纠正其中一个预测基因中的“剪接”错误,这突出了这种合成生物学方法对准确基因序列的依赖性。然而,有可能将四种RcKS(L)s中的每一种与之前观察到的二萜合酶活性之一进行匹配,从而获得具有功能的酶。有趣的是,RcKS(L)s的产物分布似乎支持量子化学计算提出的独特二萜合酶反应机制,而不是经典提出的途径。

相似文献

2
Divergent Evolution of the Diterpene Biosynthesis Pathway in Tea Plants () Caused by Single Amino Acid Variation of -Kaurene Synthase.
J Agric Food Chem. 2020 Sep 16;68(37):9930-9939. doi: 10.1021/acs.jafc.0c03488. Epub 2020 Sep 3.
5
Additional diterpenes from Physcomitrella patens synthesized by copalyl diphosphate/kaurene synthase (PpCPS/KS).
Plant Physiol Biochem. 2015 Nov;96:110-4. doi: 10.1016/j.plaphy.2015.07.011. Epub 2015 Jul 17.
6
Evolution of Labdane-Related Diterpene Synthases in Cereals.
Plant Cell Physiol. 2020 Dec 23;61(11):1850-1859. doi: 10.1093/pcp/pcaa106.
9
Diterpene synthases facilitating production of the kaurane skeleton of eriocalyxin B in the medicinal plant Isodon eriocalyx.
Phytochemistry. 2019 Feb;158:96-102. doi: 10.1016/j.phytochem.2018.11.015. Epub 2018 Nov 26.

引用本文的文献

3
Unraveling the Biosynthesis of Carvacrol in Different Tissues of .
Int J Mol Sci. 2022 Oct 30;23(21):13231. doi: 10.3390/ijms232113231.
5
A pair of threonines mark ent-kaurene synthases for phytohormone biosynthesis.
Phytochemistry. 2021 Apr;184:112672. doi: 10.1016/j.phytochem.2021.112672. Epub 2021 Jan 29.
6
Divergent synthesis of complex diterpenes through a hybrid oxidative approach.
Science. 2020 Aug 14;369(6505):799-806. doi: 10.1126/science.abb8271.
7
Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases.
Metab Eng. 2019 Sep;55:44-58. doi: 10.1016/j.ymben.2019.06.008. Epub 2019 Jun 17.
8
Functional Diversification of Kaurene Synthase-Like Genes in .
Plant Physiol. 2017 Jun;174(2):943-955. doi: 10.1104/pp.17.00202. Epub 2017 Apr 5.
9
A Pair of Residues That Interactively Affect Diterpene Synthase Product Outcome.
ACS Chem Biol. 2017 Mar 17;12(3):862-867. doi: 10.1021/acschembio.6b01075. Epub 2017 Feb 14.
10
Extreme promiscuity of a bacterial and a plant diterpene synthase enables combinatorial biosynthesis.
Metab Eng. 2016 Sep;37:24-34. doi: 10.1016/j.ymben.2016.04.001. Epub 2016 Apr 7.

本文引用的文献

1
To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism.
Annu Rev Plant Biol. 2014;65:259-86. doi: 10.1146/annurev-arplant-050213-035705. Epub 2014 Jan 22.
2
Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins.
Plant J. 2014 Aug;79(4):659-78. doi: 10.1111/tpj.12436. Epub 2014 Mar 26.
3
Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia.
J Bacteriol. 2014 Jan;196(1):100-6. doi: 10.1128/JB.01031-13. Epub 2013 Oct 18.
4
Gene discovery of modular diterpene metabolism in nonmodel systems.
Plant Physiol. 2013 Jun;162(2):1073-91. doi: 10.1104/pp.113.218347. Epub 2013 Apr 23.
5
Synthesis: A constructive debate.
Nature. 2012 Dec 13;492(7428):188-9. doi: 10.1038/492188a.
6
Toward a biosynthetic route to sclareol and amber odorants.
J Am Chem Soc. 2012 Nov 21;134(46):18900-3. doi: 10.1021/ja307404u. Epub 2012 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验