Suppr超能文献

解析克氏锥虫转唾液酸酶与兰氏锥虫唾液酸酶水解活性差异:一项量子力学-分子力学建模研究

Unraveling the differences of the hydrolytic activity of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase: a quantum mechanics-molecular mechanics modeling study.

作者信息

Bueren-Calabuig Juan A, Pierdominici-Sottile Gustavo, Roitberg Adrian E

机构信息

Department of Chemistry, Quantum Theory Project, University of Florida , Gainesville, Florida 32611, United States.

出版信息

J Phys Chem B. 2014 Jun 5;118(22):5807-16. doi: 10.1021/jp412294r. Epub 2014 May 21.

Abstract

Chagas' disease, also known as American trypanosomiasis, is a lethal, chronic disease that currently affects more than 10 million people in Central and South America. The trans-sialidase from Trypanosoma cruzi (T. cruzi, TcTS) is a crucial enzyme for the survival of this parasite: sialic acids from the host are transferred to the cell surface glycoproteins of the trypanosome, thereby evading the host's immune system. On the other hand, the sialidase of T. rangeli (TrSA), which shares 70% sequence identity with TcTS, is a strict hydrolase and shows no trans-sialidase activity. Therefore, TcTS and TrSA represent an excellent framework to understand how different catalytic activities can be achieved with extremely similar structures. By means of combined quantum mechanics-molecular mechanics (QM/MM, SCC-DFTB/Amberff99SB) calculations and umbrella sampling simulations, we investigated the hydrolysis mechanisms of TcTS and TrSA and computed the free energy profiles of these reactions. The results, together with our previous computational investigations, are able to explain the catalytic mechanism of sialidases and describe how subtle differences in the active site make TrSA a strict hydrolase and TcTS a more efficient trans-sialidase.

摘要

恰加斯病,又称美洲锥虫病,是一种致命的慢性疾病,目前在中美洲和南美洲影响着超过1000万人。克氏锥虫(T. cruzi, TcTS)的转唾液酸酶是这种寄生虫生存的关键酶:宿主的唾液酸被转移到锥虫的细胞表面糖蛋白上,从而逃避宿主的免疫系统。另一方面,与TcTS有70%序列同一性的兰氏锥虫(T. rangeli)唾液酸酶(TrSA)是一种严格的水解酶,不表现出转唾液酸酶活性。因此,TcTS和TrSA是理解如何用极其相似的结构实现不同催化活性的绝佳框架。通过结合量子力学-分子力学(QM/MM, SCC-DFTB/Amberff99SB)计算和伞形采样模拟,我们研究了TcTS和TrSA的水解机制,并计算了这些反应的自由能分布。这些结果与我们之前的计算研究一起,能够解释唾液酸酶的催化机制,并描述活性位点的细微差异如何使TrSA成为一种严格的水解酶,而TcTS成为一种更有效的转唾液酸酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e3c/4051249/a1ce83e02d5f/jp-2013-12294r_0009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验