Suppr超能文献

通过足细胞碱化降低蛋白尿

Reduction of proteinuria through podocyte alkalinization.

作者信息

Altintas Mehmet M, Moriwaki Kumiko, Wei Changli, Möller Clemens C, Flesche Jan, Li Jing, Yaddanapudi Suma, Faridi Mohd Hafeez, Gödel Markus, Huber Tobias B, Preston Richard A, Jiang Jean X, Kerjaschki Dontscho, Sever Sanja, Reiser Jochen

机构信息

From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035.

the Department of Medicine, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136.

出版信息

J Biol Chem. 2014 Jun 20;289(25):17454-67. doi: 10.1074/jbc.M114.568998. Epub 2014 May 9.

Abstract

Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi.

摘要

足细胞是高度分化的细胞,是肾脏滤过屏障的关键组成部分。其足突(FP)结构的丧失(FP 消失)会导致尿蛋白流失。在此,我们展示了中性氨基酸谷氨酰胺在肾脏滤过屏障的结构和功能调节中的新作用。使用基因、毒性和免疫损伤模型对培养的足细胞进行代谢通量分析,确定了谷氨酰胺利用途径增加。我们发现,在患病足细胞中,谷氨酰胺摄取增加,以在 FP 消失的疾病状态下将营养支持与增加的需求相匹配。这一特性可用于将更多量的谷氨酰胺转运到受损的足细胞中。谷氨酰胺的可用性决定了足细胞细胞内 pH(pHi)的调节。足细胞碱化会降低胞质组织蛋白酶 L 蛋白酶活性并保护足细胞细胞骨架。给足细胞补充谷氨酰胺可减少 LPS 处理小鼠的蛋白尿,而酸化则会增加肾小球损伤。总之,我们的数据提供了一个通过调节足细胞氨基酸利用和 pHi 来对抗尿蛋白流失的代谢机会。

相似文献

1
Reduction of proteinuria through podocyte alkalinization.
J Biol Chem. 2014 Jun 20;289(25):17454-67. doi: 10.1074/jbc.M114.568998. Epub 2014 May 9.
2
1,25-dihydroxyvitamin D(3) inhibits podocyte uPAR expression and reduces proteinuria.
PLoS One. 2013 May 31;8(5):e64912. doi: 10.1371/journal.pone.0064912. Print 2013.
3
Synaptopodin protects against proteinuria by disrupting Cdc42:IRSp53:Mena signaling complexes in kidney podocytes.
Am J Pathol. 2007 Aug;171(2):415-27. doi: 10.2353/ajpath.2007.070075. Epub 2007 Jun 14.
4
Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling.
Nat Commun. 2017 Sep 4;8(1):413. doi: 10.1038/s41467-017-00498-4.
6
FHL2 mediates podocyte Rac1 activation and foot process effacement in hypertensive nephropathy.
Sci Rep. 2019 Apr 30;9(1):6693. doi: 10.1038/s41598-019-42328-1.
7
Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance.
J Clin Invest. 2014 Mar;124(3):1098-113. doi: 10.1172/JCI69778. Epub 2014 Feb 17.
8
Inhibition of podocyte FAK protects against proteinuria and foot process effacement.
J Am Soc Nephrol. 2010 Jul;21(7):1145-56. doi: 10.1681/ASN.2009090991. Epub 2010 Jun 3.
9
Rho-kinase inhibition prevents proteinuria in immune-complex-mediated antipodocyte nephritis.
Am J Physiol Renal Physiol. 2012 Oct;303(7):F1015-25. doi: 10.1152/ajprenal.00380.2011. Epub 2012 Jul 18.
10
Proteinuria: is it all in the foot?
J Clin Invest. 2007 Aug;117(8):2079-82. doi: 10.1172/JCI32966.

引用本文的文献

2
The Life of a Kidney Podocyte.
Acta Physiol (Oxf). 2025 Aug;241(8):e70081. doi: 10.1111/apha.70081.
3
The intelligent podocyte: sensing and responding to a complex microenvironment.
Nat Rev Nephrol. 2025 May 8. doi: 10.1038/s41581-025-00965-y.
6
INF2 mutations cause kidney disease through a gain-of-function mechanism.
Sci Adv. 2024 Nov 15;10(46):eadr1017. doi: 10.1126/sciadv.adr1017. Epub 2024 Nov 13.
8
Glutaminolysis is a Potential Therapeutic Target for Kidney Diseases.
Diabetes Metab Syndr Obes. 2024 Jul 23;17:2789-2807. doi: 10.2147/DMSO.S471711. eCollection 2024.
9
LRH-1 activation alleviates diabetes-induced podocyte injury by promoting GLS2-mediated glutaminolysis.
Cell Prolif. 2023 Nov;56(11):e13479. doi: 10.1111/cpr.13479. Epub 2023 Apr 13.
10
Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy.
BMC Genomics. 2021 Nov 24;22(1):852. doi: 10.1186/s12864-021-08155-3.

本文引用的文献

2
Melanocortin 1 receptor agonists reduce proteinuria.
J Am Soc Nephrol. 2010 Aug;21(8):1290-8. doi: 10.1681/ASN.2009101025. Epub 2010 May 27.
3
Oral bicarbonate: renoprotective in CKD?
Nat Rev Nephrol. 2010 Jan;6(1):15-7. doi: 10.1038/nrneph.2009.204.
5
Material balance studies on animal cell metabolism using a stoichiometrically based reaction network.
Biotechnol Bioeng. 1996 Dec 5;52(5):579-90. doi: 10.1002/(SICI)1097-0290(19961205)52:5<579::AID-BIT5>3.0.CO;2-G.
6
Metabolic flux analysis of hybridoma cells in different culture media using mass balances.
Biotechnol Bioeng. 1996 May 5;50(3):299-318. doi: 10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO;2-B.
8
Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism.
Biotechnol Bioeng. 1994 May;43(11):1059-74. doi: 10.1002/bit.260431109.
9
Mitochondria: the hub of cellular Ca2+ signaling.
Physiology (Bethesda). 2008 Apr;23:84-94. doi: 10.1152/physiol.00046.2007.
10
Stoichiometric modelling of cell metabolism.
J Biosci Bioeng. 2008 Jan;105(1):1-11. doi: 10.1263/jbb.105.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验