Suppr超能文献

犬结肠平滑肌起搏产生的离子基础。

Ionic basis of pacemaker generation in dog colonic smooth muscle.

作者信息

Barajas-López C, Den Hertog A, Huizinga J D

机构信息

Intestinal Disease Research Unit, McMaster University, Hamilton, Ontario, Canada.

出版信息

J Physiol. 1989 Sep;416:385-402. doi: 10.1113/jphysiol.1989.sp017767.

Abstract
  1. The ionic basis of the slow waves in the circular muscle of the dog colon, in particular the ionic conductances involved in their initiation, were investigated by measuring intracellular electrical activity in the Abe-Tomita-type chamber for voltage control. 2. The depolarization that initiates the slow wave activity could be evoked by an increase in inward current and/or by a block of outward current. According to previous work, inward current could be carried by Na+, Cl-, and Ca2+ ions; K+ ions would carry outward current. 3. The Na+ channel blocker tetrodotoxin (5 x 10(-7) M) did not affect the slow wave amplitude nor its rate of rise. After omission of Na+, by replacing Na+ with N-methyl-D-glucamine, large slow waves continued to develop although some changes in slow wave characteristics occurred. 4. Replacement of 91% of the Cl- by isethionate decreased the slow wave frequency and increased the slow wave amplitude. However, NaCl substitution by sucrose increased the slow wave frequency and decreased the slow wave amplitude. 5. Slow wave activity continued to develop after blockade of Ca2+ influx by D600 (10(-6) M) or CoCl2 (1-3 mM). D600 and Co2+ did not affect the membrane potential but reduced the slow wave amplitude and abolished the plateau potential. Slow waves were abolished after omission of extracellular Ca2+ (plus 1 mM-EGTA). This suggests that Ca2+ influx is probably not necessary but extracellular presence of Ca2+ ions is indispensible for the slow wave generation. 6. The combination of 0 Na+, Li+ HEPES solution, by replacing Na+ with Li+, plus D600 depolarized the cells (up to approximately -40 mV) and abolished slow wave activity. This effect was voltage dependent since repolarization caused slow waves to return. 7. Abolition of the slow wave activity was also obtained by current-induced depolarization to approximately -40 mV. However, during high-K+-induced depolarization (to approximately -40 mV) high amplitude (16 mV) slow waves were still present, slowing that the voltage dependence of the slow waves was shifted positively. This effect probably occurs due to modification by extracellular K+ of a voltage-dependent K+ conductance, which would suggest that a K+ conductance is involved in slow wave generation. 8. In conclusion, slow waves are generated by cyclic membrane conductance changes, which are dependent on the presence of extracellular Ca2+ ions and on the membrane potential. Our data are consistent with the hypothesis that slow waves are initiated by the blockade of a K+ conductance.
摘要
  1. 通过在用于电压控制的阿部 - 富田型腔室中测量细胞内电活动,研究了犬结肠环形肌中慢波的离子基础,特别是其起始过程中涉及的离子电导。2. 引发慢波活动的去极化可由内向电流增加和/或外向电流阻断引起。根据先前的研究,内向电流可由Na⁺、Cl⁻和Ca²⁺离子携带;K⁺离子携带外向电流。3. Na⁺通道阻滞剂河豚毒素(5×10⁻⁷ M)不影响慢波幅度及其上升速率。用N - 甲基 - D - 葡糖胺替代Na⁺后,尽管慢波特征发生了一些变化,但仍会继续产生大的慢波。4. 用羟乙基磺酸替代91%的Cl⁻会降低慢波频率并增加慢波幅度。然而,用蔗糖替代NaCl会增加慢波频率并降低慢波幅度。5. 用D600(10⁻⁶ M)或CoCl₂(1 - 3 mM)阻断Ca²⁺内流后,慢波活动仍会继续发展。D600和Co²⁺不影响膜电位,但会降低慢波幅度并消除平台电位。去除细胞外Ca²⁺(加1 mM乙二醇双四乙酸)后慢波消失。这表明Ca²⁺内流可能不是必需的,但细胞外Ca²⁺离子的存在对于慢波产生是不可或缺的。6. 用Li⁺替代Na⁺的0 Na⁺、Li⁺ HEPES溶液与D600组合会使细胞去极化(高达约 - 40 mV)并消除慢波活动。这种效应是电压依赖性的,因为复极化会使慢波恢复。7. 通过电流诱导去极化至约 - 40 mV也可消除慢波活动。然而,在高K⁺诱导的去极化(至约 - 40 mV)期间,仍存在高幅度(16 mV)的慢波,这表明慢波的电压依赖性正向移动。这种效应可能是由于细胞外K⁺对电压依赖性K⁺电导的修饰引起的,这表明K⁺电导参与慢波产生。8. 总之,慢波是由周期性膜电导变化产生的,这取决于细胞外Ca²⁺离子的存在和膜电位。我们的数据与慢波由K⁺电导阻断引发的假设一致。

相似文献

1
Ionic basis of pacemaker generation in dog colonic smooth muscle.
J Physiol. 1989 Sep;416:385-402. doi: 10.1113/jphysiol.1989.sp017767.
2
Role of the sodium pump in pacemaker generation in dog colonic smooth muscle.
J Physiol. 1989 Sep;416:369-83. doi: 10.1113/jphysiol.1989.sp017766.
3
Canine colonic circular muscle generates action potentials without the pacemaker component.
Can J Physiol Pharmacol. 1994 Jan;72(1):70-81. doi: 10.1139/y94-012.
5
Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.
J Physiol. 1994 Jul 1;478 ( Pt 1)(Pt 1):157-71. doi: 10.1113/jphysiol.1994.sp020239.
6
Role of nonselective cation current in muscarinic responses of canine colonic muscle.
Am J Physiol. 1993 Dec;265(6 Pt 1):C1463-71. doi: 10.1152/ajpcell.1993.265.6.C1463.
8
Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
Am J Physiol. 1993 Dec;265(6 Pt 1):C1552-61. doi: 10.1152/ajpcell.1993.265.6.C1552.

引用本文的文献

1
Electromechanical coupling across the gastroduodenal junction.
Acta Physiol (Oxf). 2025 Mar;241(3):e70008. doi: 10.1111/apha.70008.
2
Ca dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract.
Physiol Rev. 2024 Jan 1;104(1):329-398. doi: 10.1152/physrev.00036.2022. Epub 2023 Aug 10.
3
Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased Na1.5 current and mechanosensitivity.
Am J Physiol Gastrointest Liver Physiol. 2018 Apr 1;314(4):G494-G503. doi: 10.1152/ajpgi.00016.2017. Epub 2017 Nov 22.
5
Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca transients and slow waves in adult mouse small intestine.
Am J Physiol Gastrointest Liver Physiol. 2017 Mar 1;312(3):G228-G245. doi: 10.1152/ajpgi.00363.2016. Epub 2016 Dec 15.
6
Expression and function of the Scn5a-encoded voltage-gated sodium channel NaV 1.5 in the rat jejunum.
Neurogastroenterol Motil. 2016 Jan;28(1):64-73. doi: 10.1111/nmo.12697. Epub 2015 Oct 13.
7
Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.
Am J Physiol Gastrointest Liver Physiol. 2015 Sep 15;309(6):G506-12. doi: 10.1152/ajpgi.00051.2015. Epub 2015 Jul 16.
8
Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome.
Gastroenterology. 2014 Jun;146(7):1659-1668. doi: 10.1053/j.gastro.2014.02.054. Epub 2014 Mar 5.
9
Targeting ion channels for the treatment of gastrointestinal motility disorders.
Therap Adv Gastroenterol. 2012 Jan;5(1):5-21. doi: 10.1177/1756283X11415892.
10
Fast Na+ current in circular smooth muscle cells of the large intestine.
Pflugers Arch. 1993 Jun;423(5-6):485-91. doi: 10.1007/BF00374945.

本文引用的文献

4
Towards an estimate of chloride permeability in the smooth muscle of guinea-pig vas deferens.
J Physiol. 1983 Mar;336:179-97. doi: 10.1113/jphysiol.1983.sp014575.
5
Electrical activities of the muscle layers of the canine colon.
J Physiol. 1983 Sep;342:67-83. doi: 10.1113/jphysiol.1983.sp014840.
7
ATP-regulated K+ channels in cardiac muscle.
Nature. 1983;305(5930):147-8. doi: 10.1038/305147a0.
8
Blocking of large unitary calcium-dependent potassium currents by internal sodium ions.
Pflugers Arch. 1983 Feb;396(2):179-81. doi: 10.1007/BF00615524.
9
Sodium action potentials induced by calcium chelation in rat uterine smooth muscle.
Pflugers Arch. 1982 Nov 11;395(3):232-8. doi: 10.1007/BF00584815.
10
Cat ventricular muscle treated with D600: effects on calcium and potassium currents.
J Physiol. 1984 Jul;352:203-16. doi: 10.1113/jphysiol.1984.sp015287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验