Suppr超能文献

下肢截肢者使用假肢自行车的运动适应。

Motor adaptation to prosthetic cycling in people with trans-tibial amputation.

机构信息

Department of Prosthetics and Orthotics; Montgomery, College of Health Sciences, Alabama State University, Montgomery, AL, USA.

School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

J Biomech. 2014 Jul 18;47(10):2306-13. doi: 10.1016/j.jbiomech.2014.04.037. Epub 2014 Apr 26.

Abstract

The neuromusculoskeletal system interacts with the external environment via end-segments, e.g. feet. A person with trans-tibial amputation (TTAmp) has lost a foot and ankle; hence the residuum with prosthesis becomes the new end-segment. We investigated changes in kinetics and muscle activity in TTAmps during cycling with this altered interface with the environment. Nine unilateral TTAmps and nine subjects without amputation (NoAmp) pedaled at a constant torque of 15 Nm and a constant cadence of 90 rpm (~150 watts). Pedal forces and limb kinematics were used to calculate resultant joint moments. Electromyographic activity was recorded to determine its magnitude and timing. Biomechanical and EMG variables of the amputated limb were compared to those of the TTAmp sound limb and to the dominant limb in the NoAmp group using a one-way ANOVA. Results showed maximum angular displacement between the residuum and prosthesis was 4.8±1.8 deg. The amputated limb compared to sound limb and NoAmp group produced lower extensor moments averaged over the cycle about the ankle (13±2.3, 20±5.7, and 19±5.3 Nm, respectfully) and knee (8.4±5.0, 15±4.5, and 12.7±5.9 Nm, respectfully) (p<0.05). Gastrocnemius and rectus femoris peak activity in the TTAmps shifted to later in the crank cycle (by 36° and 75°, respectfully; p<0.05). These data suggest gastrocnemius was utilized as a one-joint knee flexor in combination with rectus femoris for prosthetic socket control and highlight prosthetic control as an interaction between the residuum, prosthesis and external environment.

摘要

神经肌肉骨骼系统通过末端节段(例如足部)与外部环境相互作用。接受胫骨截肢(TTAmp)的患者失去了足部和踝关节;因此,带有假肢的残肢成为了新的末端节段。我们研究了 TTAmp 在骑自行车时,由于与环境的这种改变的接口,其动力学和肌肉活动的变化。九名单侧 TTAmp 患者和九名无截肢(NoAmp)患者以 15 Nm 的恒定扭矩和 90 rpm 的恒定转速(~150 瓦)蹬踏。使用踏板力和肢体运动学来计算合成关节力矩。记录肌电图活动以确定其幅度和时间。使用单向方差分析将截肢肢体的生物力学和肌电图变量与 TTAmp 健康肢体和 NoAmp 组的优势肢体进行比较。结果显示,残肢和假肢之间的最大角位移为 4.8±1.8 度。与健康肢体和 NoAmp 组相比,截肢肢体在整个踝关节(分别为 13±2.3、20±5.7 和 19±5.3 Nm)和膝关节(8.4±5.0、15±4.5 和 12.7±5.9 Nm)产生的伸肌力矩平均较低(p<0.05)。TTAmp 中的比目鱼肌和股直肌的峰值活动在曲柄周期中向后转移(分别为 36°和 75°;p<0.05)。这些数据表明,比目鱼肌被用作单关节膝关节屈肌,与股直肌一起用于控制假肢插座,并强调假肢控制是残肢、假肢和外部环境之间的相互作用。

相似文献

1
Motor adaptation to prosthetic cycling in people with trans-tibial amputation.
J Biomech. 2014 Jul 18;47(10):2306-13. doi: 10.1016/j.jbiomech.2014.04.037. Epub 2014 Apr 26.
4
A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
J Biomech. 1996 Jan;29(1):81-90. doi: 10.1016/0021-9290(95)00011-9.
6
Muscle activity patterns altered during pedaling at different body orientations.
J Biomech. 1996 Oct;29(10):1349-56. doi: 10.1016/0021-9290(96)00038-3.
7
Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.
Prosthet Orthot Int. 1999 Dec;23(3):231-8. doi: 10.3109/03093649909071639.
9
Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
J Neuroeng Rehabil. 2012 May 28;9:29. doi: 10.1186/1743-0003-9-29.
10
Back squat mechanics in persons with a unilateral transtibial amputation: A case study.
Prosthet Orthot Int. 2022 Feb 1;46(1):50-53. doi: 10.1097/PXR.0000000000000058.

引用本文的文献

1
Biomechanical effects of saddle height changes in leisure cycling with unilateral transtibial prostheses: A simulated study.
PLoS One. 2025 Jan 7;20(1):e0317121. doi: 10.1371/journal.pone.0317121. eCollection 2025.
2
Restoration of natural somatic sensations to the amputees: finding the right combination of neurostimulation methods.
Front Neurosci. 2024 Nov 25;18:1466684. doi: 10.3389/fnins.2024.1466684. eCollection 2024.
3
Reconstruction of Soft Tissues of the Postamputation Lower Leg Stump with a Free Anterolateral Thigh Flap for Optimal Prosthesis.
Plast Reconstr Surg Glob Open. 2024 Jun 11;12(6):e5905. doi: 10.1097/GOX.0000000000005905. eCollection 2024 Jun.
5
Wearable Sensors in Sports for Persons with Disability: A Systematic Review.
Sensors (Basel). 2021 Mar 7;21(5):1858. doi: 10.3390/s21051858.
6
Bicycling participation in people with a lower limb amputation: a scoping review.
BMC Musculoskelet Disord. 2018 Nov 13;19(1):398. doi: 10.1186/s12891-018-2313-2.
7
An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition.
Sensors (Basel). 2017 Sep 4;17(9):2020. doi: 10.3390/s17092020.

本文引用的文献

1
Effects of prosthetic mass distribution on metabolic costs and walking symmetry.
J Appl Biomech. 2013 Jun;29(3):317-28. doi: 10.1123/jab.29.3.317. Epub 2012 Sep 13.
2
Harnessing neuroplasticity for clinical applications.
Brain. 2012 Apr;135(Pt 4):e215; author reply e216. doi: 10.1093/brain/aws017. Epub 2012 Feb 28.
3
Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study.
J Neurophysiol. 2012 Apr;107(8):2057-71. doi: 10.1152/jn.00865.2011. Epub 2011 Dec 21.
4
Effectiveness of force production in persons with unilateral transtibial amputation during cycling.
Prosthet Orthot Int. 2011 Dec;35(4):373-8. doi: 10.1177/0309364611423129. Epub 2011 Oct 13.
5
Pedaling asymmetries in cyclists with unilateral transtibial amputation: effect of prosthetic foot stiffness.
J Appl Biomech. 2011 Nov;27(4):314-21. doi: 10.1123/jab.27.4.314. Epub 2011 Jun 2.
6
Harnessing neuroplasticity for clinical applications.
Brain. 2011 Jun;134(Pt 6):1591-609. doi: 10.1093/brain/awr039. Epub 2011 Apr 10.
9
EMG profiles of lower extremity muscles during cycling at constant workload and cadence.
J Electromyogr Kinesiol. 1992;2(2):69-80. doi: 10.1016/1050-6411(92)90018-E.
10
Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists.
Exp Brain Res. 2010 Jun;203(4):681-92. doi: 10.1007/s00221-010-2279-2. Epub 2010 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验