Fernández Javier, Marín Laura, Alvarez-Alonso Raquel, Redondo Saúl, Carvajal Juan, Villamizar Germán, Villar Claudio J, Lombó Felipe
Research Group BITTEN, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 7, Facultad de Medicina, Oviedo 33006, Spain.
Mar Drugs. 2014 May 9;12(5):2668-99. doi: 10.3390/md12052668.
Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development.
多种放线菌产生一类在结构和生物合成上相关的非核糖体肽化合物,它们属于色修饰肽家族。这些化合物可作为双嵌入剂嵌入DNA螺旋。它们具有抗肿瘤、抗寄生虫、抗菌和抗病毒生物活性。这些化合物表现出高度保守的模块性(发色团、氨基酸的数量和类型)。这种模块性以及它们在基因水平上的高度序列相似性意味着这些途径有共同的生物合成起源。在此,我们利用如今五个此类基因簇(硫代珊瑚菌素、曲菌素、SW - 163和棘霉素/醌霉素)已公开这一事实,描述了关于控制这种模块生物合成规则的见解。这种模块性在设计和生产新型基因工程衍生物以及开发新的化学合成策略方面具有潜在应用。这将促进它们的临床开发。