Suppr超能文献

针对具有测量变异性的随机生物系统的高效参数推断。

Efficient parametric inference for stochastic biological systems with measured variability.

作者信息

Johnston Iain G

出版信息

Stat Appl Genet Mol Biol. 2014 Jun;13(3):379-90. doi: 10.1515/sagmb-2013-0061.

Abstract

Stochastic systems in biology often exhibit substantial variability within and between cells. This variability, as well as having dramatic functional consequences, provides information about the underlying details of the system's behavior. It is often desirable to infer properties of the parameters governing such systems given experimental observations of the mean and variance of observed quantities. In some circumstances, analytic forms for the likelihood of these observations allow very efficient inference: we present these forms and demonstrate their usage. When likelihood functions are unavailable or difficult to calculate, we show that an implementation of approximate Bayesian computation (ABC) is a powerful tool for parametric inference in these systems. However, the calculations required to apply ABC to these systems can also be computationally expensive, relying on repeated stochastic simulations. We propose an ABC approach that cheaply eliminates unimportant regions of parameter space, by addressing computationally simple mean behavior before explicitly simulating the more computationally demanding variance behavior. We show that this approach leads to a substantial increase in speed when applied to synthetic and experimental datasets.

摘要

生物学中的随机系统在细胞内部和细胞之间常常表现出显著的变异性。这种变异性不仅具有重大的功能后果,还提供了有关系统行为潜在细节的信息。在给定观测数量的均值和方差的实验观察结果的情况下,通常希望推断控制此类系统的参数的性质。在某些情况下,这些观测值的似然函数的解析形式允许非常有效的推断:我们给出这些形式并展示它们的用法。当似然函数不可用或难以计算时,我们表明近似贝叶斯计算(ABC)的一种实现是这些系统中参数推断的强大工具。然而,将ABC应用于这些系统所需的计算也可能在计算上很昂贵,这依赖于重复进行随机模拟。我们提出一种ABC方法,通过在明确模拟计算要求更高的方差行为之前处理计算简单的均值行为,廉价地消除参数空间中的不重要区域。我们表明,当应用于合成数据集和实验数据集时,这种方法会导致速度大幅提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验