Yao Hai, Huda Walter, Mah Eugene, He Wenjun
Department of Bioengineering, Clemson-MUSC Bioengineering Program, Clemson University, Charleston, SC 29425, USA
Department of Radiology and Radiological Science, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
Radiat Prot Dosimetry. 2015 Feb;163(2):251-60. doi: 10.1093/rpd/ncu157. Epub 2014 May 12.
This study estimated the energy incident on patients in radiography, mammography and CT using data related to X-ray beam quantity and quality. The total X-ray beam quantity is the average Air Kerma multiplied by the X-ray beam area and expressed as the Kerma-Area Product (Gy cm(-2)). The X-ray beam quality primarily depends on the target material (and anode angle), X-ray voltage (and ripple) as well as X-ray beam filtration. For any X-ray spectra, dividing total energy (fluence × mean energy) by the X-ray beam Kerma-Area Product yields the energy per Kerma-Area Product value (ε/KAP). Published data on X-ray spectra characteristics and energy fluence per Air Kerma conversion factors were used to determine ε/KAP factors. In radiography, ε/KAP increased from 6 mJ Gy(-1) cm(-2) at the lowest X-ray tube voltage (50 kV) to 25 mJ Gy(-1) cm(-2) at the highest X-ray tube voltage (140 kV). ε/KAP values ranged between 1 and 5 mJ Gy(-1) cm(-2) in mammography and between 24 and 42 mJ Gy(-1) cm(-2) in CT. Changes in waveform ripple resulted in variations in ε/KAP of up to 15 %, similar to the effect of changes resulting in the choice of anode angle. For monoenergetic X-ray photons, there was a sigmoidal-type increase in ε/KAP from 2 mJ Gy(-1) cm(-2) at 20 keV to 42 mJ Gy(-1) cm(-2) at 80 keV. However, between 80 and 150 keV, the ε/KAP shows variations with changing photon energy of <10 %. Taking the average spectrum energy to consist of monoenergetic X rays generally overestimates the true value of ε/KAP. This study illustrated that the energy incident on a patient in any area of radiological imaging can be estimated from the total X-ray beam intensity (KAP) when X-ray beam quality is taken into account. Energy incident on the patient can be used to estimate the energy absorbed by the patient and the corresponding patient effective dose.
本研究利用与X射线束数量和质量相关的数据,估算了X线摄影、乳腺摄影和CT检查中患者所接受的入射能量。X射线束的总数量是平均空气比释动能乘以X射线束面积,以比释动能面积乘积(Gy cm⁻²)表示。X射线束的质量主要取决于靶材料(和阳极角度)、X射线管电压(和纹波)以及X射线束过滤。对于任何X射线能谱,将总能量(注量×平均能量)除以X射线束比释动能面积乘积,可得到每个比释动能面积乘积值的能量(ε/KAP)。已发表的关于X射线能谱特征和每空气比释动能转换因子的能量注量数据用于确定ε/KAP因子。在X线摄影中,ε/KAP从最低X射线管电压(50 kV)时的6 mJ Gy⁻¹ cm⁻²增加到最高X射线管电压(140 kV)时的25 mJ Gy⁻¹ cm⁻²。在乳腺摄影中,ε/KAP值在1至5 mJ Gy⁻¹ cm⁻²之间,在CT中则在24至42 mJ Gy⁻¹ cm⁻²之间。波形纹波的变化导致ε/KAP变化高达15%,这与阳极角度选择所导致的变化效果类似。对于单能X射线光子,ε/KAP从20 keV时的2 mJ Gy⁻¹ cm⁻²呈S形增加到80 keV时的42 mJ Gy⁻¹ cm⁻²。然而,在80至150 keV之间,ε/KAP随光子能量变化的幅度小于10%。将平均能谱能量视为由单能X射线组成通常会高估ε/KAP的真实值。本研究表明,当考虑X射线束质量时,可根据X射线束总强度(比释动能面积乘积)估算放射成像任何区域中患者所接受的入射能量。患者所接受的入射能量可用于估算患者吸收的能量以及相应的患者有效剂量。