Suppr超能文献

用于染料敏化太阳能电池的少层石墨烯修饰TiO2纳米晶体的形成及其光伏性能

Formation and photovoltaic performance of few-layered graphene-decorated TiO2 nanocrystals used in dye-sensitized solar cells.

作者信息

Liu Yueli, Cheng Yuqing, Shu Wei, Peng Zhuoyin, Chen Keqiang, Zhou Jing, Chen Wen, Zakharova Galina S

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.

出版信息

Nanoscale. 2014 Jun 21;6(12):6755-62. doi: 10.1039/c4nr00288a.

Abstract

Few-layer graphene/TiO2 nanocrystal composites are successfully in situ synthesized at a low temperature of 400 °C using C28H16Br2 as the precursor. Raman mapping images show that the TiO2 nanocrystals are very uniformly dispersed in the composite films, and the in situ coating during the thermal decomposition process will favor the formation of a good interface combination between the few-layered graphene and the TiO2 nanocrystals. The few-layer graphene/TiO2 nanocrystal composites are used as photoanodes in dye-sensitized solar cells (DSSCs), and the conversion efficiency of 8.25% is obtained under full sun irradiation (AM 1.5), which increases by 65% compared with that of the pure TiO2 nanocrystal DSSCs (5.01%). It is found that the good interface combination between few-layered graphene and TiO2 nanocrystals may improve the electric conductivity and lifetime of photoinduced electrons in DSSCs. Moreover, some carbon atoms are doped into the crystal structure of the TiO2 nanocrystals during the thermal decomposition process, which will enhance the light absorption by narrowing the band gap and favor the improvement of the photovoltaic efficiency.

摘要

以C28H16Br2为前驱体,在400℃的低温下成功原位合成了少层石墨烯/TiO2纳米晶体复合材料。拉曼映射图像表明,TiO2纳米晶体在复合薄膜中分散得非常均匀,热分解过程中的原位包覆有利于在少层石墨烯和TiO2纳米晶体之间形成良好的界面结合。少层石墨烯/TiO2纳米晶体复合材料被用作染料敏化太阳能电池(DSSC)的光阳极,在全阳光照射(AM 1.5)下获得了8.25%的转换效率,与纯TiO2纳米晶体DSSC(5.01%)相比提高了65%。研究发现,少层石墨烯和TiO2纳米晶体之间良好的界面结合可能会提高DSSC中光生电子的电导率和寿命。此外,在热分解过程中,一些碳原子被掺杂到TiO2纳米晶体的晶体结构中,这将通过缩小带隙来增强光吸收,并有利于提高光伏效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验