Su Ting, Yang Yulin, Na Yong, Fan Ruiqing, Li Liang, Wei Liguo, Yang Bin, Cao Wenwu
Department of Chemistry and ‡Condensed Matter Science and Technology Institute, Harbin Institute of Technology , Harbin 150001, P. R. China.
ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3754-63. doi: 10.1021/am5085447. Epub 2015 Feb 4.
Hydrogenated titanium dioxide (H-TiO2) nanocrystals were successfully prepared via annealing TiO2 in H2/N2 mixed gas flow at elevated temperatures ranging from 300 to 600 °C. Electron paramagnetic resonance (EPR) spectra were used to determine the produced oxygen vacancy in H-TiO2. Variations in temperature were studied to investigate the concentration change of oxygen vacancy in H-TiO2. The H-TiO2 nanocrystals prepared at different temperatures were employed into photoanodes sensitized by N719 dye and found to have exceptional effect on the solar-to-electric energy conversion efficiency (η). Photoanodes with H-TiO2 nanocrystals hydrogenated at 300 °C show the highest short-circuit current density (Jsc) of 18.92 mA cm(-2) and photoelectrical conversion efficiency of 7.76% under standard AM 1.5 global solar irradiation, indicating a 27 and 28% enhancement in Jsc and η, respectively, in comparison to those with TiO2. The enhancement is attributed to high donor density, narrow band gap and positive shift of flat band energy (Vfb) of H-TiO2 that promote the driving force for electron injection. Intensity-modulated photocurrent spectroscopy (IMPS) accompanied by intensity-modulated photovoltage spectroscopy (IMVS) and other analyses were applied to shed more light on the fundamental mechanisms inside the charge transfer and transport in these systems.
通过在300至600°C的高温下于H₂/N₂混合气流中对TiO₂进行退火处理,成功制备了氢化二氧化钛(H-TiO₂)纳米晶体。利用电子顺磁共振(EPR)光谱来确定H-TiO₂中产生的氧空位。研究了温度变化以探究H-TiO₂中氧空位浓度的变化。将在不同温度下制备的H-TiO₂纳米晶体应用于由N719染料敏化的光阳极,并发现其对太阳能到电能的转换效率(η)具有显著影响。在标准AM 1.5全球太阳辐射下,经300°C氢化的H-TiO₂纳米晶体的光阳极显示出最高短路电流密度(Jsc)为18.92 mA cm⁻²,光电转换效率为7.76%,这表明与使用TiO₂的光阳极相比,Jsc和η分别提高了27%和28%。这种提高归因于H-TiO₂的高施主密度、窄带隙和平带能量(Vfb)的正移,这些因素促进了电子注入的驱动力。应用强度调制光电流光谱(IMPS)以及强度调制光电压光谱(IMVS)和其他分析方法,以更深入地了解这些系统中电荷转移和传输的基本机制。