Tusler Charlotte A, Maggs David J, Kass Philip H, Paul-Murphy Joanne R, Schwab Ivan R, Murphy Christopher J
Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
Vet Ophthalmol. 2015 Jan;18 Suppl 1:1-7. doi: 10.1111/vop.12176. Epub 2014 May 14.
To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis.
Four normal royal pythons (Python regius).
Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography.
Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes.
Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery.
描述使用频域光学相干断层扫描(SD-OCT)、数字裂隙灯生物显微镜检查和外部摄影,观察蜕皮过程中蛇类角质层、瞬膜和角膜的变化。
四条正常的球蟒(Python regius)。
在整个完整的蜕皮周期中,每天使用鼻侧、轴向和颞侧的SD-OCT图像、数字裂隙灯生物显微镜检查和外部摄影对蛇进行评估。
频域光学相干断层扫描(SD-OCT)图像可靠地显示了壮观的角质层和基质、皮下间隙(SCS)、角膜、前房、虹膜和施莱姆管。当可见时,瞬膜下间隙(SSS)在周边比轴向更扩张。在所有三个成像区域的蛇中,蜕皮过程中的眼表变化相对一致。从基线(一个完整周期完成后7天)开始,瞬膜逐渐增厚,然后分离为浅表角质层和深部高反射基质成分,从而形成SCS。在瞬膜分离期间,基质恢复到原始反射率,并且在SCS内观察到多个高反射灶(可能是来自角质层-基质界面的碎片)。在蜕皮的所有阶段,角膜的特征或厚度相对不变。裂隙灯图像无法观察到这些变化。
频域光学相干断层扫描(SD-OCT)为蛇类眼前节提供了出色的高分辨率图像,特别是在蜕皮各阶段手动固定的正常蛇的角质层、瞬膜和角膜,对于眼前节疾病的蛇类值得进一步研究。周边瞬膜可能是向SSS进行诊断或治疗性注射以及开展瞬膜手术的首选切入点。