Seo Dong Han, Yick Samuel, Han Zhao Jun, Fang Jing Hua, Ostrikov Kostya Ken
CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia).
ChemSusChem. 2014 Aug;7(8):2317-24. doi: 10.1002/cssc.201402045. Epub 2014 May 14.
Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
石墨烯和碳纳米管(CNTs)是用于超级电容器的有吸引力的电极材料。然而,诸如碳纳米管的基底受限生长、液体电解质中的纳米管束束、未充分利用的基面以及石墨烯片的堆叠等挑战,迄今为止阻碍了它们的广泛应用。在此,我们展示了一种通过将碳纳米管直接生长在垂直石墨烯纳米片(VGNS)上形成的混合结构。VGNS是通过绿色等离子体辅助方法制造的,该方法将天然前驱体分解并重构为有序的石墨结构。碳纳米管和VGNS的协同组合克服了两种材料固有的挑战。所得的VGNS/CNTs杂化物表现出高比电容和良好的循环稳定性。电荷存储主要基于非法拉第机制。此外,还进行了一系列优化实验,以揭示实现所展示的高超电容器性能所需的关键因素。