Vivas Laura, Godino Andrea, Dalmasso Carolina, Caeiro Ximena E, Macchione Ana F, Cambiasso Maria J
Changes in body water/sodium balance are tightly controlled by the central nervous system (CNS) to avoid abnormal cardiovascular function and the development of pathological states. Every time there is a disturbance in extracellular sodium concentration or body sodium content, there is also a change in extracellular fluid volume and, depending on its magnitude, this can be associated with an adjustment in arterial blood pressure (BP). The process of sensory integration takes place in different nuclei, with diverse phenotypes and at different levels of the CNS. To control those several changes, the CNS receives continuous input about the status of extracellular fluid osmolarity, sodium concentration, sense of taste, fluid volume, and BP (Figure 9.1). Signals detected by taste receptors, peripheral osmo-sodium, volume receptors, and arterial/cardiopulmonary baroreceptors reach the nucleus of the solitary tract (NTS) by the VIIth, IXth, and Xth cranial nerves. The other main brain entry of the information related to fluid and cardiovascular balance are the lamina terminalis (LT) and one of the sensory circumventricular organs (CVOs), the area postrema (AP). The LT, consisting of the median preoptic nucleus (MnPO) and the other two sensory CVOs—i.e., subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT) —is recognized as a site in the brain that is crucial for the physiological regulation of hydroelectrolyte balance. The SFO and OVLT lack a blood–brain barrier and contain cells that are sensitive to humoral signals, such as changes in plasma and cerebrospinal fluid sodium concentration (Vivas et al. 1990), osmolality (Sladek and Johnson 1983), and angiotensin II (ANG II) levels (Ferguson and Bains 1997; Simpson et al. 1978). Such unique features make the SFO and OVLT key brain regions for sensing the status of the body fluids and electrolytes. Humoral and neural signals that arrive to the two main brain entries—that is, the CVOs of the LT and within the hindbrain the AP-NTS—activate a central circuit that includes integrative areas such as the MnPO, the paraventricular (PVN), the supraoptic (SON), lateral parabrachial nucleus (LPBN), dorsal raphe nucleus (DRN), and neurochemical systems such as the angiotensinergic, vasopressinergic, oxytocinergic (OT), and serotonergic (5-HT) systems (Figures 9.1 and 9.2). Once these signals act on the above-mentioned neurochemical networks, they trigger appropriate sympathetic, endocrine, and behavioral responses. Therefore, after a body fluid deficit, water and sodium intake and excretion need to be controlled to minimize disturbances of hydromineral homeostasis. In this context, hypovolemia and hyponatremia induced by body fluid depletion stimulate central and peripheral osmo–sodium receptors, taste receptors, volume and arterial/cardiopulmonary baroreceptors, and the renin–angiotensin system (RAS). This latter system, for example, acts mainly through the sensory CVOs and/or the AP to activate brain neural pathways that elevate BP, release vasopressin and aldosterone (ALDO), increase renal sympathetic nerve activity, and increase the ingestion of water and sodium. Among these responses, sodium appetite constitutes an important homeostatic behavior involved in seeking out and acquiring sodium from the environment. Under normal circumstances, the average daily intake of sodium in animals exceeds what is actually needed; however, when they are challenged by environmental (e.g., increased ambient temperature), physiological (e.g., exercise, pregnancy and lactation), or pathophysiological (e.g., emesis, diarrhea, adrenal, or kidney insufficiency) conditions, endocrine and autonomic mechanisms primarily target the kidney, to influence the rate of water and sodium loss, and the vasculature, to maintain arterial BP. Afterward, a behavioral mechanism such as sodium appetite is the means by which sodium loss to the environment is ultimately restored (Geerling and Loewy 2008). It is important to note that in humans, salt appetite is permanently enhanced after perinatal sodium loss (Crystal and Berstein 1995, 1998; Leshem 2009), but putative sodium loss in adults due to, for example, hemorrhage, dehydration, or breastfeeding, does not increase salt appetite significantly; thus, the existence of sodium appetite as a result of sodium loss in adult humans remains controversial (Bertino et al. 1982; Beauchamp et al. 1983, 1987; Leshem 2009). This review will focus on evidence from our laboratory for neurophysiological mechanisms that regulate sodium balance. Specifically, it tries to answer how the brain elicits sodium appetite in response to hyponatremia/hypovolemia associated with sodium depletion, which areas are activated after sodium depletion, how the brain controls the inhibition of this behavior once the deficit is compensated (satiety phase), and what role brain neurochemical groups have for endocrine responses. We close the chapter by analyzing the effects of gonadal hormones and sex chromosome complement (SCC) on sodium appetite and cardiovascular function, respectively.
中枢神经系统(CNS)严格控制着机体水/钠平衡的变化,以避免心血管功能异常和病理状态的发展。每当细胞外钠浓度或机体钠含量出现紊乱时,细胞外液量也会发生变化,根据其变化程度,这可能会导致动脉血压(BP)的调整。感觉整合过程发生在中枢神经系统不同水平、具有不同表型的不同核团中。为了控制这些变化,中枢神经系统持续接收有关细胞外液渗透压、钠浓度、味觉、液体量和血压状态的输入信息(图9.1)。味觉感受器、外周渗透 - 钠感受器、容量感受器以及动脉/心肺压力感受器检测到的信号通过第VII、IX和X对脑神经到达孤束核(NTS)。与液体和心血管平衡相关信息进入大脑的另一个主要部位是终板(LT)以及一个感觉室周器官(CVO)——最后区(AP)。LT由视前正中核(MnPO)以及另外两个感觉CVO——即穹窿下器官(SFO)和终板血管器(OVLT)组成,被认为是大脑中对水电解质平衡生理调节至关重要的部位。SFO和OVLT缺乏血脑屏障,含有对体液信号敏感的细胞,如血浆和脑脊液钠浓度变化(Vivas等人,1990年)、渗透压(Sladek和Johnson,1983年)以及血管紧张素II(ANG II)水平(Ferguson和Bains,1997年;Simpson等人,1978年)。这些独特特征使SFO和OVLT成为感知体液和电解质状态的关键脑区。到达两个主要脑区入口——即LT的CVO以及后脑内的AP - NTS的体液和神经信号,激活了一个中枢回路,该回路包括整合区域,如MnPO、室旁核(PVN)、视上核(SON)、外侧臂旁核(LPBN)、中缝背核(DRN)以及神经化学系统,如血管紧张素能、加压素能、催产素能(OT)和5 - 羟色胺能(5 - HT)系统(图9.1和9.2)。一旦这些信号作用于上述神经化学网络,就会引发适当的交感、内分泌和行为反应。因此,在体液不足后,需要控制水和钠的摄入与排泄,以尽量减少水盐稳态的干扰。在这种情况下,体液消耗引起的血容量减少和低钠血症会刺激中枢和外周渗透 - 钠受体、味觉受体、容量和动脉/心肺压力感受器以及肾素 - 血管紧张素系统(RAS)。例如,后者系统主要通过感觉CVO和/或AP起作用,激活脑神经网络,从而升高血压、释放加压素和醛固酮(ALDO)、增加肾交感神经活动,并增加水和钠的摄入。在这些反应中,钠食欲是一种重要的稳态行为——即从环境中寻找并获取钠。在正常情况下,动物每日钠的平均摄入量超过实际所需量;然而,当它们受到环境因素(如环境温度升高)、生理因素(如运动、怀孕和哺乳)或病理生理因素(如呕吐、腹泻、肾上腺或肾功能不全)的挑战时,内分泌和自主神经机制主要作用于肾脏,以影响水和钠的流失速率,并作用于脉管系统以维持动脉血压。随后,一种行为机制,如钠食欲,是最终恢复向环境中钠流失的方式(Geerling和Loewy,2008年)。需要注意的是,在人类中,围产期钠流失后盐食欲会永久性增强(Crystal和Berstein,1995年、1998年;Leshem,2009年),但例如成年人因出血、脱水或哺乳导致的假定钠流失,并不会显著增加盐食欲;因此,成年人类因钠流失而产生钠食欲的存在仍存在争议(Bertino等人,1982年;Beauchamp等人,1983年、1987年;Leshem,2009年)。本综述将聚焦于我们实验室关于调节钠平衡的神经生理机制的证据。具体而言,它试图回答大脑如何响应与钠缺乏相关的低钠血症/血容量减少而引发钠食欲,钠缺乏后哪些区域被激活,一旦缺乏得到补偿(饱腹感阶段)大脑如何控制对这种行为的抑制,以及脑内神经化学基团在内分泌反应中起什么作用。我们通过分别分析性腺激素和性染色体组成(SCC)对钠食欲和心血管功能的影响来结束本章。