Suppr超能文献

猫的气味对家鼠(小家鼠)生殖行为和生理的影响

Influence of Cat Odor on Reproductive Behavior and Physiology in the House Mouse: (Mus Musculus)

作者信息

Voznessenskaya Vera V

Abstract

Closely related Mus species and are the most popular objects in the study of mammalian chemical communication. The understanding of pheromone influences on mammalian behavior has advanced dramatically since the term “pheromone” was introduced. The major advances in recent years have been based mainly on a single species—the mouse (laboratory form of ). Genetic technologies have revealed a surprisingly large repertoire of chemosensory receptors in mice that potentially detect pheromones (Brennan 2010). However, interspecies chemical communication in the house mouse remains the least investigated area. Use of the laboratory inbred strains of mice makes understanding of the behavioral effects elicited by chemical signals from other species even more complicated. Predator-prey relationships provide an excellent model for the study of interspecies chemical communication. Small mammals in general are frequently at risk to be caught by mammalian, avian, or reptilian predators. In turn their prey species developed a variety of specific adaptations to facilitate recognition, avoidance, and defense against predators. Such antipredator behavioral systems are critical for survival (see review Apfelbach et al. 2005). Chemosensory detection is a very important aspect for predator avoidance strategy for many mammals including the house mouse. Odors from carnivores may elicit fear-induced stereotypic behaviors, change activity patterns and feeding rate, and affect the neuroendocrine system, reproductive behavior, and reproductive output in potential prey (Apfelbach et al. 2005; Dielenberg and McGregor 2001; Harvell 1990; Hayes 2008; Hayes et al. 2006; Kats and Dill 1998; Müller-Schwarze 2006). A number of studies (see Table 14.1) showed effects of odors derived from different predators on behavior and physiology of the house mouse. It implies the existence of shared signal properties through a number of predator species. This idea about generalized “leitmotif” of predator odors was suggested even much earlier (Stoddart 1980). The idea about the existence of a common carnivore signal was experimentally tested for the first time by Nolte et al. (1994). Manipulations with predator diet as well as chemical removal from carnivore urine of the sulfurous compounds and amines revealed their key role in the effects of coyote urine () on feeding rates in wild living (Nolte et al. 1994). Berton et al. (1998) also demonstrated that the diet of a cat strongly affects the behavior of mice towards its feces. Using similar chemical manipulations with cat urine () and manipulating with the diet of urine donors, it has been shown that sulfurous compounds and amines are critical for reproductive inhibitory effects of the cat urine in rodents (Voznessenskaya et al. 2002). Another study (Fendt 2006) indicates that only exposure to urine of canids and felids but not of herbivores induces defensive behavior in laboratory rats (Fendt 2006). The term “kairomone” was widely adopted to name predator chemical signals: “kairomones, such as those that elicit fear behavior, are cues transmitted between species that selectively disadvantage the signaler and advantage the receiver” (Wyatt 2003). In search of the molecular nature of kairomones, Papes et al. (2010) isolated the salient molecules from two species (rat and cat) using a combination of behavioral assays in naïve laboratory mice, calcium imaging and c-Fos induction. The defensive behavior-promoting activity released by other animals is encoded by species-specific proteins belonging to the major urinary protein (MUP) family, homologs of aggression-promoting mouse pheromones and mediated through the vomeronasal organ (VNO) (Papes et al. 2010). The trace-amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates that was initially considered to be neurotransmitter receptors before it was discovered that mouse TAARs function as chemosensory receptors in the olfactory epithelium (Liberles and Buck 2006). Discovery of a new function of TAARs stimulated the search for the potential ligands. More recent studies (Liberles 2009) showed that ligands for mouse TAARs include a number of volatile amines, several of which are natural constituents of mouse urine. One chemical, 2-phenylethylamine, is reported to be enriched in the urine of stressed animals, and two others, trimethylamine and isoamylamine, are enriched in male versus female urine. These findings raised the possibility that some TAARs are pheromone receptors (Liberles 2009). Further studies (Ferrero et al. 2011) revealed that 2-phenylethylamine is a key component of a predator odor blend that triggers hardwired aversion circuits in the rodent brain. Neurons expressing TAARs project to discrete glomeruli predominantly localized to a confined bulb region (Johnson et al. 2012). TAARs expression involves different regulatory logic than OR expression. Moreover, the epigenetic signature of OR gene choice is absent from TAAR genes. The unique molecular and anatomical features of the TAAR neurons suggest that they constitute a distinct olfactory subsystem (Johnson et al. 2012). Initially 2-phenylethylamine was purified from bobcat urine; quantitative HPLC analysis across 38 mammalian species indicated enriched 2-phenylethylamine production by numerous carnivores. Rats and mice avoid a 2-phenylethylamine odor source; enzymatic depletion of 2-phenylethylamine from a carnivore odor showed that it is required for full avoidance behavior (Ferrero et al. 2011). This study clearly demonstrated that rodent olfactory sensory neurons have the capacity for recognizing interspecies odors. Findings of universal carnivore signals may explain why potential prey respond to odors from allopatric predators with which they do not have evolutionary links and never encountered in their lives, on one hand. On the other hand, the ability of predator odors to produce profound effects on the behavior of prey in general and especially on the reproductive behavior and neuroendocrine system is associated with natural predators only, which suggests an essential role of the evolutionary link between signaling predator and potential prey. First of all, it means that potential prey (in our case, mice) are able to distinguish predator species on a chemosensory basis. Numerous studies (Table 14.1) support this observation (also see review in Apfelbach et al. 2005). It raises a question about the multicompound nature of the kairomones as well as about the existence of species-specific predator chemical cues. One of the most specialized predators toward the house mouse is the domestic cat . A long history of coexistence in the same environments led to the development of mutual adaptations at the genetic level. These two species provide a perfect model for the study of innate responses to predator odors. Felinine is a unique sulfur-containing amino acid found in the urine of domestic cats (Rutherfurd et al. 2002). Sulfur-containing volatile compounds 3-mercapto-3-methyl-1-butanol, 3-mercapto-3-methylbutyl formate, 3-methyl-3-methylthio-1-butanol, and 3-methyl-3-(2-methyl-disulfanyl)-1-butanol are identified as species-specific odorants and candidates of felinine derivatives from the cat urine. The levels of these compounds were found to be sex- and age-dependent (Miyazaki et al. 2006a, b). These cat-specific volatile compounds may represent pheromones used as territorial markers for conspecific recognition or reproductive purposes by mature cats (Miyazaki et al. 2008). Species-specific compounds may be used also by other species to recognize potential predators and their physiological status. We now present evidence to support bioactivity of L-felinine and its derivates with the house mouse ().

摘要

亲缘关系相近的小家鼠属物种是哺乳动物化学通讯研究中最受欢迎的对象。自“信息素”一词被提出以来,对信息素对哺乳动物行为影响的理解有了显著进展。近年来的主要进展主要基于单一物种——小鼠(小家鼠的实验室形态)。基因技术揭示了小鼠中数量惊人的潜在检测信息素的化学感应受体(布伦南,2010年)。然而,家鼠的种间化学通讯仍是研究最少的领域。使用实验室近交系小鼠使得理解来自其他物种的化学信号所引发的行为效应变得更加复杂。捕食者与猎物的关系为种间化学通讯研究提供了一个绝佳模型。一般来说,小型哺乳动物经常面临被哺乳动物、鸟类或爬行动物捕食者捕获的风险。相应地,它们的猎物物种发展出了各种特定的适应性特征,以促进对捕食者的识别、躲避和防御。这种反捕食行为系统对生存至关重要(见阿普费尔巴赫等人的综述,2005年)。化学感应检测是许多哺乳动物(包括家鼠)反捕食策略的一个非常重要的方面。食肉动物的气味可能引发恐惧诱导的刻板行为、改变活动模式和进食速度,并影响潜在猎物的神经内分泌系统、生殖行为和繁殖产出(阿普费尔巴赫等人,2005年;迪伦贝格和麦格雷戈,2001年;哈维尔,1990年;海斯,2008年;海斯等人,2006年;卡茨和迪尔,1998年;米勒 - 施瓦泽,2006年)。多项研究(见表14.1)表明,来自不同捕食者的气味对家鼠的行为和生理有影响。这意味着在许多捕食者物种中存在共享的信号特性。关于捕食者气味的广义“主导主题”这一观点甚至更早之前就有人提出(斯托达特,1980年)。关于存在共同食肉动物信号的观点首次由诺尔特等人(1994年)进行了实验验证。通过改变捕食者的饮食以及从食肉动物尿液中化学去除含硫化合物和胺类物质,揭示了它们在郊狼尿液()对野生小家鼠进食速度影响中的关键作用(诺尔特等人,1994年)。伯顿等人(1998年)也证明,猫的饮食会强烈影响小鼠对其粪便的行为。通过对猫尿液()进行类似的化学处理以及改变尿液供体的饮食,已表明含硫化合物和胺类物质对猫尿液在啮齿动物中的生殖抑制作用至关重要(沃兹涅先斯卡娅等人,2002年)。另一项研究(芬特,2006年)表明,仅暴露于犬科动物和猫科动物的尿液而非食草动物的尿液会在实验室大鼠中诱发防御行为(芬特,2006年)。“异源信息素”一词被广泛用于命名捕食者化学信号:“异源信息素,如那些引发恐惧行为的信息素,是在物种间传递的线索,对信号发送者有选择性的不利影响,而对接收者有有利影响”(怀亚特,2003年)。为了寻找异源信息素的分子本质,帕佩斯等人(2010年)使用未接触过相关刺激的实验室小鼠的行为测定、钙成像和c - Fos诱导相结合的方法,从两个物种(大鼠和猫)中分离出了显著分子。其他动物释放的促进防御行为的活性由属于主要尿蛋白(MUP)家族的物种特异性蛋白质编码,这些蛋白质是促进攻击行为的小鼠信息素的同源物,并通过犁鼻器(VNO)介导(帕佩斯等人,2010年)。痕量胺相关受体(TAARs)在脊椎动物中形成了一个特定的G蛋白偶联受体家族,在发现小鼠TAARs在嗅觉上皮中作为化学感应受体发挥作用之前,最初被认为是神经递质受体(利伯莱斯和巴克,2006年)。TAARs新功能的发现激发了对潜在配体的寻找。最近的研究(利伯莱斯,2009年)表明,小鼠TAARs的配体包括多种挥发性胺类物质,其中几种是小鼠尿液的天然成分。据报道,一种化学物质2 - 苯乙胺在应激动物的尿液中含量丰富,另外两种,三甲胺和异戊胺,在雄性尿液中相对于雌性尿液中含量丰富。这些发现增加了一些TAARs是信息素受体的可能性(利伯莱斯,2009年)。进一步的研究(费雷罗等人,2011年)表明,2 - 苯乙胺是一种捕食者气味混合物的关键成分,它能触发啮齿动物大脑中的固有厌恶回路。表达TAARs的神经元投射到主要位于一个受限嗅球区域的离散肾小球(约翰逊等人,2012年)。TAARs的表达涉及与嗅觉受体(OR)表达不同的调控逻辑。此外,TAAR基因不存在OR基因选择的表观遗传特征。TAAR神经元独特的分子和解剖特征表明它们构成了一个独特的嗅觉子系统(约翰逊等人,2012年)。最初,2 - 苯乙胺是从山猫尿液中纯化出来的;对38种哺乳动物的定量高效液相色谱分析表明,许多食肉动物都能大量产生2 - 苯乙胺。大鼠和小鼠会避开2 - 苯乙胺气味源;从食肉动物气味中酶解去除2 - 苯乙胺表明,它是完全产生回避行为所必需的(费雷罗等人,2011年)。这项研究清楚地表明,啮齿动物的嗅觉感觉神经元有识别种间气味的能力。普遍存在食肉动物信号的发现一方面可以解释为什么潜在猎物会对与其没有进化联系且在其生活中从未遇到过的异域捕食者的气味做出反应。另一方面,捕食者气味对猎物行为,尤其是对生殖行为和神经内分泌系统产生深远影响的能力仅与自然捕食者相关,这表明信号发送捕食者与潜在猎物之间的进化联系起着至关重要的作用。首先,这意味着潜在猎物(在我们的例子中是小鼠)能够在化学感应的基础上区分捕食者物种。多项研究(表14.1)支持了这一观察结果(另见阿普费尔巴赫等人的综述,2005年)。这就提出了关于异源信息素的多化合物性质以及物种特异性捕食者化学线索存在的问题。对家鼠来说最具特异性的捕食者之一是家猫。在同一环境中长时间的共存导致了在基因水平上相互适应的发展。这两个物种为研究对捕食者气味的先天反应提供了一个完美模型。猫尿氨酸是在家猫尿液中发现的一种独特的含硫氨基酸(拉瑟福德等人,2002年)。含硫挥发性化合物3 - 巯基 - 3 - 甲基 - 1 - 丁醇、3 - 巯基 - 3 - 甲基丁基甲酸酯、3 - 甲基 - 3 - 甲硫基 - 1 - 丁醇和3 - 甲基 - 3 -(2 - 甲基二硫烷基)- 1 - 丁醇被鉴定为猫尿中物种特异性的气味物质以及猫尿氨酸衍生物的候选物。发现这些化合物的水平与性别和年龄有关(宫崎等人,2006a,b)。这些猫特异性挥发性化合物可能代表成熟猫用作种内识别或生殖目的的领地标记的信息素(宫崎等人,2008年)。物种特异性化合物也可能被其他物种用于识别潜在捕食者及其生理状态。我们现在提供证据支持L - 猫尿氨酸及其衍生物对家鼠()的生物活性。

相似文献

2
Detection and avoidance of a carnivore odor by prey.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11235-40. doi: 10.1073/pnas.1103317108. Epub 2011 Jun 20.
4
Trace amine-associated receptors are olfactory receptors in vertebrates.
Ann N Y Acad Sci. 2009 Jul;1170:168-72. doi: 10.1111/j.1749-6632.2009.04014.x.
6
Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus.
Curr Biol. 2015 May 18;25(10):1340-6. doi: 10.1016/j.cub.2015.03.026. Epub 2015 Apr 30.
8
Coyote urine, but not 2-phenylethylamine, induces a complete profile of unconditioned anti-predator defensive behaviors.
Physiol Behav. 2021 Feb 1;229:113210. doi: 10.1016/j.physbeh.2020.113210. Epub 2020 Oct 14.
9
The effects of predator odors in mammalian prey species: a review of field and laboratory studies.
Neurosci Biobehav Rev. 2005;29(8):1123-44. doi: 10.1016/j.neubiorev.2005.05.005. Epub 2005 Aug 8.
10
Deorphanization of Olfactory Trace Amine-Associated Receptors.
Methods Mol Biol. 2025;2915:201-212. doi: 10.1007/978-1-0716-4466-9_14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验