脊椎动物和无脊椎动物的化学信号传导介绍

Introduction to Chemical Signaling in Vertebrates and Invertebrates

作者信息

Wyatt Tristram D

出版信息

DOI:
Abstract

Chemical senses are probably among the first senses to have evolved and all cellular life forms from bacteria to animals are sensitive to chemical information, whether it comes from potential food, predators, the environment, or other members of the same species. Chemicals from outside the organism that provide information are termed semiochemicals (Figure 1.1). With the chemical senses in place it was perhaps inevitable that chemical communication would evolve. are evolved chemical signals between members of the same species. The molecules are emitted by an individual and received by a second individual of the same species, in which they cause a specific reaction, for example, a stereotyped behavior or a developmental process (Wyatt 2010, after Karlson & Lüscher 1959). The word was coined from the Greek , to carry or transfer, and , to excite or stimulate. While Karlson and Lüscher (1959) proposed the word after the first pheromone had been identified in an insect, the silk moth , they suggested the term would apply to chemical signals in all types of animal from crustaceans to fish to terrestrial mammals. Equally, while the silk moth pheromone was a single molecule, pheromones consisting of many molecules together were not excluded. Karlson and Lüscher anticipated that different species might share some of the same molecules. No requirement was made for pheromone responses to be innate. I emphasize these points only because some authors writing about mammals raise these as objections to applying the term to mammal pheromones (e.g., Doty 2010; Petrulis 2013). As I argue below, pheromones are found across the animal kingdom and while mammal pheromones hard to study, we do have many examples that seem robust (see for example Schaal et al. 2003; Schaal,Chapter 17). Even so, criticisms of some claims in the literature are justified. We should also be careful to distinguish phenomena mediated by pheromones from olfactory phenomena that have more to do with differences between individuals’ chemical profiles, allowing individuals to be distinguished (see below). As well as pheromones, animals also receive chemical information about the identity of another individual. The receiving animal may learn a : a variable chemical mixture (a subset of the molecules given off in an animal’s chemical profile) learned as a template by other conspecifics and used to recognize an animal as an individual (e.g., lobsters, mice) or as a member of a particular social group such as a family, clan, or colony (e.g., ants, bees, badgers) (Figures 1.1 and 1.2) (Wyatt 2010, 2014). The signature mixture is the mix of molecules (and likely, their relative ratios) that are learned. The template is the neural representation of the signature mixture stored in the memory of the learner (after van Zweden & d’Ettorre 2010). There are two distinguishing characteristics of signature mixtures: first, a requirement for learning, and second, the variability of the cues learned, allowing other individuals to be distinguished by their different chemical profiles (Wyatt 2014). There are many biological systems where distinguishing between pheromones and learned highly variable signature mixtures can help our understanding. For example, each ant colony has different combinations of molecules, largely cuticular hydrocarbons, which can be learned as signature mixtures allowing ants to discriminate between colony members and noncolony members (Bos & d’Ettorre d’Ettorre 2012). Every queen of the species, however, has the same queen pheromone (Liebig 2010). In the ant , the queen pheromone is the cuticular hydrocarbon 3-methylhentriacontane, missing from worker profiles (Holman et al. 2010). Similarly, explaining a phenomenon such as the Bruce effect in mice (Brennan 2009; Mucignat-Caretta,Chapter 11) is easier if we distinguish between the individually distinct odors of different males and the pheromone(s) that all male mice produce. The female’s memory of the signature mixture of the particular male she mated with has the effect of blocking any stimulus from later contact with his male pheromones whereas the stimulus from the same male pheromones of other, unfamiliar males passes through to the hypothalamus, triggering the Bruce effect. Pheromones and the molecules learned as signature mixtures appear in the cloud of molecules that make up the chemical profile of an organism (Figure 1.2). Much of the chemical profile is highly variable from individual to individual. The sources of the molecules in the chemical profile include the animal’s own secretions as well as its environment, food, bacteria, and other individuals. It is this complex background that makes identifying pheromones so challenging in many organisms. Semiochemicals can also be significant to individuals from other species and these are termed (Figure 1.1) (Nordlund & Lewis 1976). Broadcast signals can be eavesdropped, as kairomones. Some of the most spectacular examples of using such kairomones come from predatory beetles homing in on the aggregation pheromones released by their prey, bark beetles (Raffa 2001). Eavesdropping can occur across taxa. Nematode-trapping fungi detect the pheromones of their prey nematodes and produce more traps in response (Hsueh et al. 2013). Aggressive chemical mimicry (allomones) can exploit the responses of organisms to their own pheromones (Vereecken & McNeil 2010). For example, most orchids offer no nectar reward but instead, by mimicking the female pheromones of the insect, they attract bee and wasp males to pollinate them. Bolas spiders lure male moths by producing the moths’ female sex pheromone. In this introductory chapter, I will touch on many classic systems such as moths, and mice, which are explored in more detail in the other chapters of this book, but I will also take the opportunity to illustrate points with the pheromones of other animal taxa such as nematodes, mollusks, and fish. For this introductory chapter, I have usually chosen recent references that will lead you to the relevant literature. More detail on the topics covered in this chapter can be found in Wyatt (2014).

摘要

化学感官可能是最早进化出来的感官之一,从细菌到动物的所有细胞生命形式都对化学信息敏感,无论这些信息来自潜在的食物、捕食者、环境还是同一物种的其他成员。来自生物体外部提供信息的化学物质被称为信息素(图1.1)。随着化学感官的出现,化学通讯的进化可能是不可避免的。种内信息素是同一物种成员之间进化出的化学信号。这些分子由一个个体释放,被同一物种的另一个个体接收,并在后者身上引发特定反应,例如一种刻板行为或一个发育过程(怀亚特,2010年,参考卡尔森和吕舍尔,1959年)。“种内信息素”这个词由希腊语“φέρω”(携带或传递)和“ὁρμή”(激发或刺激)组合而成。虽然卡尔森和吕舍尔(1959年)在一种昆虫——家蚕中首次发现种内信息素后提出了这个词,但他们认为这个术语适用于从甲壳类动物到鱼类再到陆生哺乳动物等所有类型动物的化学信号。同样,虽然家蚕的种内信息素是单个分子,但由多个分子组成的种内信息素也不被排除在外。卡尔森和吕舍尔预计不同物种可能会共享一些相同的分子。种内信息素反应不一定是先天的。我强调这些要点只是因为一些撰写关于哺乳动物文章的作者将这些作为反对将该术语应用于哺乳动物种内信息素的理由(例如,多蒂,2010年;彼得鲁利斯,2013年)。正如我下面所论证的,种内信息素在整个动物界都有发现,虽然研究哺乳动物的种内信息素很困难,但我们确实有许多看似可靠的例子(例如,见沙尔等人,2003年;沙尔,第17章)。即便如此,对文献中一些说法的批评是合理的。我们还应该注意区分由种内信息素介导的现象和与个体化学特征差异更多相关的嗅觉现象,后者能使个体被区分开来(见下文)。除了种内信息素,动物还会接收关于另一个个体身份的化学信息。接收信息的动物可能会学习一种特征混合物:一种可变的化学混合物(动物化学特征中释放的分子的一个子集),被其他同种个体作为模板学习,并用于将一只动物识别为个体(例如,龙虾、小鼠)或特定社会群体的成员,如家庭、氏族或群体(例如,蚂蚁、蜜蜂、獾)(图1.1和1.2)(怀亚特,2010年,2014年)。特征混合物是被学习的分子混合物(可能还有它们的相对比例)。模板是存储在学习者记忆中的特征混合物的神经表征(参考范兹韦登和德托雷,2010年)。特征混合物有两个显著特征:第一,需要学习;第二,所学习线索的变异性,这使得其他个体能够通过其不同的化学特征被区分开来(怀亚特,2014年)。在许多生物系统中,区分种内信息素和学习到的高度可变的特征混合物有助于我们的理解。例如,每个蚁群都有不同的分子组合,主要是表皮碳氢化合物,这些可以作为特征混合物被学习,使蚂蚁能够区分蚁群成员和非蚁群成员(博斯和德托雷,2012年)。然而,该物种的每个蚁后的种内信息素都是相同的(利比希,2010年)。在蚂蚁“法老蚁”中,蚁后的种内信息素是表皮碳氢化合物3 - 甲基三十一烷,工蚁的化学特征中没有这种物质(霍尔曼等人,20l0年)。同样,如果我们区分不同雄性小鼠各自独特的气味和所有雄性小鼠产生的种内信息素,那么解释小鼠中的布鲁斯效应等现象(布伦南,2009年;穆奇尼亚特 - 卡雷塔,第11章)就更容易了。雌性对她与之交配的特定雄性的特征混合物的记忆会阻止来自后来接触其雄性种内信息素的任何刺激,而来自其他不熟悉雄性的相同雄性种内信息素的刺激会传递到下丘脑,触发布鲁斯效应。种内信息素和作为特征混合物被学习的分子出现在构成生物体化学特征的分子云中(图1.2)。化学特征的大部分在个体之间高度可变。化学特征中分子的来源包括动物自身的分泌物以及其环境、食物、细菌和其他个体。正是这种复杂的背景使得在许多生物体中识别种内信息素极具挑战性。信息素对其他物种的个体也可能很重要,这些被称为利他素(图1.1)(诺德伦德和刘易斯,1976年)。广播信号可能会被窃听,就像利它素一样。利用这种利它素的一些最引人注目的例子来自捕食性甲虫追踪其猎物树皮甲虫释放的聚集信息素(拉法,2001年)。窃听可以跨分类群发生。捕食线虫的真菌检测其猎物线虫的信息素并相应地产生更多陷阱(薛等人,2013年)。攻击性化学拟态(利己素)可以利用生物体对自身信息素的反应(韦勒肯和麦克尼尔,2010年)。例如,大多数兰花不提供花蜜奖励,而是通过模仿昆虫的雌性信息素,吸引蜜蜂和黄蜂雄性为它们授粉。流星锤蜘蛛通过产生雄蛾的雌性性信息素来引诱雄蛾。在这章引言中,我将提及许多经典系统,如蛾、小鼠等,本书的其他章节会更详细地探讨这些系统,但我也会借此机会用其他动物类群(如线虫、软体动物和鱼类)的信息素来说明要点。对于这章引言,我通常选择了近期的参考文献,这些文献会引导你找到相关文献。本章所涵盖主题的更多细节可在怀亚特(2014年)中找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索