Suppr超能文献

转录因子锌感应缺失 1 (loz1) 的双锌指结构域和相邻辅助结构域对于 DNA 结合和锌感应是必需的。

The double zinc finger domain and adjacent accessory domain from the transcription factor loss of zinc sensing 1 (loz1) are necessary for DNA binding and zinc sensing.

机构信息

From the Department of Molecular Genetics, the Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210.

From the Department of Molecular Genetics.

出版信息

J Biol Chem. 2014 Jun 27;289(26):18087-96. doi: 10.1074/jbc.M114.551333. Epub 2014 May 15.

Abstract

The Loz1 transcription factor from Schizosaccharomyces pombe plays an essential role in zinc homeostasis by repressing target gene expression in zinc-replete cells. To determine how Loz1 function is regulated by zinc, we employed a genetic screen to isolate mutants with impaired zinc-dependent gene expression and analyzed Loz1 protein truncations to map a minimal zinc-responsive domain. In the screen, we isolated 36 new loz1 alleles. 27 of these alleles contained mutations resulting in the truncation of the Loz1 protein. The remaining nine alleles contained point mutations leading to an amino acid substitution within a C-terminal double zinc finger domain. Further analysis of two of these substitutions revealed that they disrupted Loz1 DNA activity in vitro. By analyzing Loz1 protein truncations, we found that the last 96 amino acids of Loz1 was the smallest region that was able to confer partial zinc-dependent repression in vivo. This 96-amino acid region contains the double zinc finger domain and an accessory domain that enhances DNA binding. These results were further supported by the findings that MtfA, a transcription factor from Aspergillus nidulans that contains a related double zinc finger, is unable to complement loz1Δ, whereas a chimera of MtfA containing the Loz1 accessory domain is able to complement loz1Δ. Together, our studies indicate that the double zinc finger domain and adjacent accessory domain preceding zinc finger 1 are necessary for DNA binding and zinc-dependent repression.

摘要

裂殖酵母中的 Loz1 转录因子通过在锌充足的细胞中抑制靶基因的表达,在锌稳态中发挥重要作用。为了确定 Loz1 功能如何受到锌的调节,我们采用遗传筛选的方法分离出锌依赖性基因表达受损的突变体,并分析 Loz1 蛋白截断以绘制最小的锌反应域。在筛选中,我们分离出 36 个新的 loz1 等位基因。其中 27 个等位基因包含导致 Loz1 蛋白截断的突变。其余九个等位基因包含导致 C 末端双锌指结构域内氨基酸取代的点突变。对其中两个取代的进一步分析表明,它们破坏了 Loz1 在体外的 DNA 活性。通过分析 Loz1 蛋白截断,我们发现 Loz1 的最后 96 个氨基酸是能够在体内赋予部分锌依赖性抑制的最小区域。该 96 个氨基酸区域包含双锌指结构域和增强 DNA 结合的辅助结构域。这些结果进一步得到了以下发现的支持:来自构巢曲霉的转录因子 MtfA 含有相关的双锌指结构域,不能补充 loz1Δ,而包含 Loz1 辅助结构域的 MtfA 嵌合体能够补充 loz1Δ。总之,我们的研究表明,双锌指结构域和锌指 1 前面的相邻辅助结构域对于 DNA 结合和锌依赖性抑制是必需的。

相似文献

2
Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15371-6. doi: 10.1073/pnas.1300853110. Epub 2013 Sep 3.
4
Functional characterization of the iron-regulatory transcription factor Fep1 from Schizosaccharomyces pombe.
J Biol Chem. 2005 Jul 1;280(26):25146-61. doi: 10.1074/jbc.M502947200. Epub 2005 May 2.
5
Zinc sensing and regulation in yeast model systems.
Arch Biochem Biophys. 2016 Dec 1;611:30-36. doi: 10.1016/j.abb.2016.02.031. Epub 2016 Mar 3.
9
Identification and characterization of transcription factor IIIA from Schizosaccharomyces pombe.
Nucleic Acids Res. 2002 Jul 1;30(13):2772-81. doi: 10.1093/nar/gkf385.
10
Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level.
Metallomics. 2014 Jul;6(7):1198-215. doi: 10.1039/c4mt00064a.

引用本文的文献

2
Zinc homeostasis in Schizosaccharomyces pombe.
Arch Microbiol. 2023 Mar 21;205(4):126. doi: 10.1007/s00203-023-03473-4.
3
Transcription factors and transporters in zinc homeostasis: lessons learned from fungi.
Crit Rev Biochem Mol Biol. 2020 Feb;55(1):88-110. doi: 10.1080/10409238.2020.1742092. Epub 2020 Mar 19.
5
Zinc-dependent activation of the Pho8 alkaline phosphatase in .
J Biol Chem. 2019 Aug 16;294(33):12392-12404. doi: 10.1074/jbc.RA119.007371. Epub 2019 Jun 25.
6
Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol.
PLoS Genet. 2018 Mar 12;14(3):e1007262. doi: 10.1371/journal.pgen.1007262. eCollection 2018 Mar.
8
The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast.
J Biol Chem. 2017 Aug 18;292(33):13823-13832. doi: 10.1074/jbc.M117.798488. Epub 2017 Jun 30.
9
The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc.
PLoS Biol. 2017 Jan 17;15(1):e2000094. doi: 10.1371/journal.pbio.2000094. eCollection 2017 Jan.
10
Zinc sensing and regulation in yeast model systems.
Arch Biochem Biophys. 2016 Dec 1;611:30-36. doi: 10.1016/j.abb.2016.02.031. Epub 2016 Mar 3.

本文引用的文献

1
Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level.
Metallomics. 2014 Jul;6(7):1198-215. doi: 10.1039/c4mt00064a.
2
3
Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15371-6. doi: 10.1073/pnas.1300853110. Epub 2013 Sep 3.
4
Promoter sequence determines the relationship between expression level and noise.
PLoS Biol. 2013;11(4):e1001528. doi: 10.1371/journal.pbio.1001528. Epub 2013 Apr 2.
5
Zinc-dependent regulation of the Adh1 antisense transcript in fission yeast.
J Biol Chem. 2013 Jan 11;288(2):759-69. doi: 10.1074/jbc.M112.406165. Epub 2012 Dec 5.
6
Zinc-responsive coactivator recruitment by the yeast Zap1 transcription factor.
Microbiologyopen. 2012 Jun;1(2):105-14. doi: 10.1002/mbo3.8.
7
The taste of heavy metals: gene regulation by MTF-1.
Biochim Biophys Acta. 2012 Sep;1823(9):1416-25. doi: 10.1016/j.bbamcr.2012.01.005. Epub 2012 Jan 20.
8
A bioinformatics view of zinc enzymes.
J Inorg Biochem. 2012 Jun;111:150-6. doi: 10.1016/j.jinorgbio.2011.11.020. Epub 2011 Dec 2.
9
Hammering out details: regulating metal levels in eukaryotes.
Trends Biochem Sci. 2011 Oct;36(10):524-31. doi: 10.1016/j.tibs.2011.07.002. Epub 2011 Aug 16.
10
Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.
PLoS One. 2011;6(7):e22535. doi: 10.1371/journal.pone.0022535. Epub 2011 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验