Suppr超能文献

酵母 Zap1 锌应答激活因子的锌调控 DNA 结合。

Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

机构信息

Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS One. 2011;6(7):e22535. doi: 10.1371/journal.pone.0022535. Epub 2011 Jul 22.

Abstract

The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

摘要

酿酒酵母的 Zap1 转录因子通过控制参与锌代谢的基因的表达,在锌稳态中发挥核心作用。Zap1 在缺锌细胞中活跃,在锌充足的细胞中受到抑制。在转录水平上,Zap1 通过正自调控来控制自身的表达。此外,Zap1 的两个激活结构域通过锌直接结合这些区域并抑制激活功能,彼此独立地受到调节。在本报告中,我们表明锌也抑制了 Zap1 的 DNA 结合。DMS 足迹法显示,Zap1 靶基因启动子的占有率受到转录自调控或不受其调控的调节。使用染色质免疫沉淀法证实了这些结果。锌对 DNA 结合活性的调节定位在 DNA 结合域上,表明 Zap1 的其他部分不需要这种控制。Zap1 的过表达会破坏 DNA 结合调控,导致组成型启动子占有率。在这些组成型结合的条件下,Zap1 的活性的锌剂量反应和细胞内锌积累都发生了改变,这表明 DNA 结合控制对锌稳态的重要性。因此,我们的结果表明,锌通过三种独立的机制对 Zap1 活性进行翻译后调节,所有这些机制都有助于 Zap1 的整体锌反应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf92/3142189/be3fad2cfefd/pone.0022535.g001.jpg

相似文献

1
Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.
PLoS One. 2011;6(7):e22535. doi: 10.1371/journal.pone.0022535. Epub 2011 Jul 22.
3
Transcriptional regulation of the Zrg17 zinc transporter of the yeast secretory pathway.
Biochem J. 2011 Apr 1;435(1):259-66. doi: 10.1042/BJ20102003.
4
Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae.
J Biol Chem. 2011 Feb 25;286(8):6844-54. doi: 10.1074/jbc.M110.203927. Epub 2010 Dec 22.
7
Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status.
Mol Microbiol. 2005 Aug;57(3):834-46. doi: 10.1111/j.1365-2958.2005.04734.x.
10
The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2.
EMBO J. 2004 Mar 10;23(5):1123-32. doi: 10.1038/sj.emboj.7600122. Epub 2004 Feb 19.

引用本文的文献

2
mA demethylase CpALKBH regulates mRNA stability to modulate the development and virulence of chestnut blight fungus.
mBio. 2025 Jan 8;16(1):e0184424. doi: 10.1128/mbio.01844-24. Epub 2024 Nov 29.
3
Metals at the Host-Fungal Pathogen Battleground.
Annu Rev Microbiol. 2024 Nov;78(1):23-38. doi: 10.1146/annurev-micro-041222-023745. Epub 2024 Nov 7.
4
Nutritional immunity: targeting fungal zinc homeostasis.
Heliyon. 2021 Aug 16;7(8):e07805. doi: 10.1016/j.heliyon.2021.e07805. eCollection 2021 Aug.
5
Fungal-Metal Interactions: A Review of Toxicity and Homeostasis.
J Fungi (Basel). 2021 Mar 18;7(3):225. doi: 10.3390/jof7030225.
6
Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status.
Nat Plants. 2021 Feb;7(2):137-143. doi: 10.1038/s41477-021-00856-7. Epub 2021 Feb 16.
7
Insights Into Behavior on Zinc Deprivation.
Front Cell Infect Microbiol. 2020 Nov 30;10:573097. doi: 10.3389/fcimb.2020.573097. eCollection 2020.
8
Zinc at the Host-Fungus Interface: How to Uptake the Metal?
J Fungi (Basel). 2020 Nov 21;6(4):305. doi: 10.3390/jof6040305.
9
The Role of Zinc in Copper Homeostasis of .
Int J Mol Sci. 2020 Oct 16;21(20):7665. doi: 10.3390/ijms21207665.
10
Transcription factors and transporters in zinc homeostasis: lessons learned from fungi.
Crit Rev Biochem Mol Biol. 2020 Feb;55(1):88-110. doi: 10.1080/10409238.2020.1742092. Epub 2020 Mar 19.

本文引用的文献

1
Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae.
J Biol Chem. 2011 Feb 25;286(8):6844-54. doi: 10.1074/jbc.M110.203927. Epub 2010 Dec 22.
2
Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis.
Nat Methods. 2009 Oct;6(10):737-40. doi: 10.1038/nmeth.1368. Epub 2009 Aug 30.
3
Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.
J Biol Chem. 2009 Oct 2;284(40):27544-56. doi: 10.1074/jbc.M109.042036. Epub 2009 Aug 5.
4
Genetically encoded sensors to elucidate spatial distribution of cellular zinc.
J Biol Chem. 2009 Jun 12;284(24):16289-16297. doi: 10.1074/jbc.M900501200. Epub 2009 Apr 10.
7
Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis.
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5812-7. doi: 10.1073/pnas.0611505104. Epub 2007 Mar 28.
8
Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts.
EMBO J. 2006 Dec 13;25(24):5726-34. doi: 10.1038/sj.emboj.7601453. Epub 2006 Nov 30.
9
Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status.
Mol Microbiol. 2005 Aug;57(3):834-46. doi: 10.1111/j.1365-2958.2005.04734.x.
10
Reduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7589-93. doi: 10.1073/pnas.0402191101. Epub 2004 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验