Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.
Nano Lett. 2014 Jun 11;14(6):3172-9. doi: 10.1021/nl500485n. Epub 2014 May 22.
Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.
激光还原氧化石墨烯(GO)为快速、非化学方法制备石墨烯提供了独特的机会。通过调整相关还原参数,可以精确控制还原氧化石墨烯的带隙和电导率。因此,对单层 GO 还原的原位监测至关重要。在本报告中,我们通过其吸收和发射的相关变化,直接观察到激光诱导的单层 GO 还原。吸收/发射电影说明了单层 GO 还原的初始阶段、其向还原氧化石墨烯(rGO)的转变以及在长时间激光照射下的后续分解。这些研究揭示了 GO 的光还原生命周期,以及通过它的本征 GO/rGO 吸收系数、其片内分布以及它们的空间非均质性。未还原 GO 的提取吸收系数为α405nm≈6.5±1.1×10(4)cm(-1),α520nm≈2.1±0.4×10(4)cm(-1),α640nm≈1.1±0.3×10(4)cm(-1),而相应的 rGOα 值为α405nm≈21.6±0.6×10(4)cm(-1),α520nm≈16.9±0.4×10(4)cm(-1),α640nm≈14.5±0.4×10(4)cm(-1)。更重要的是,相关的吸收/发射成像为我们提供了对 GO 潜在光还原机制的前所未有的洞察力,因为我们能够在空间上分辨其动力学,并将局部速率常数与激活能联系起来。在更广泛的层面上,开发的吸收成像具有普遍性,可以应用于研究其他二维材料的光学性质,特别是那些对当前单分子光学技术不可见且不发光的二维材料的光学性质。