Suppr超能文献

在负压下 Lennard-Jones 液体中的自发空化现象。

Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.

作者信息

Baidakov V G, Bobrov K S

机构信息

Institute of Thermophysics of the Ural Branch of the Russian Academy of Sciences, Amundsen Street 107a, 620016 Ekaterinburg, Russia.

出版信息

J Chem Phys. 2014 May 14;140(18):184506. doi: 10.1063/1.4874644.

Abstract

We report a molecular dynamics (MD) study of homogeneous bubble nucleation in a Lennard-Jones liquid under a negative pressure (cavitation). The rate of bubble nucleation has been determined in the range 2 x 10(-9) < J() = Jσ(4)(m/ε)(1/2) < 6 x 10(-6) by the mean lifetime method at temperatures T() = kBT/ε = 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.4, 0.5, 0.6, 0.7, 0.8. In molecular dynamics simulation calculations have also been made of the coefficient of bubble size diffusion, the Zeldovich nonequilibrium factor, and the radius of a critical nucleus R*. Different approaches to the determination of the nucleation rate in a stretched liquid have been considered in the framework of classical nucleation theory (CNT). The values of J obtained in MD simulation are by 8-20 orders higher than those predicted by CNT. The work of formation of a critical bubble and the dependence of surface tension γ(R*) at the critical bubble-liquid interface have been determined by data of MD simulation from CNT. The values of γ obtained have been approximated by an extended Tolman formula that takes into account, besides a linear correction, also the quadratic in curvature terms. The Tolman length δ∞ is negative and equals -(0.1-0.2)σ. The coefficient at 1/R*(2) is positive and does not exceed σ(2).

摘要

我们报告了在负压(空化)下对 Lennard-Jones 液体中均匀气泡成核的分子动力学(MD)研究。通过平均寿命法,在温度 T* = kBT/ε = 0.35、0.4、0.5、0.6、0.7、0.8 下,确定了气泡成核速率在 2×10⁻⁹ < J() = Jσ⁴(m/ε)¹/² < 6×10⁻⁶ 的范围内。在分子动力学模拟中,还计算了气泡尺寸扩散系数、泽尔多维奇非平衡因子以及临界核半径 R。在经典成核理论(CNT)的框架内,考虑了确定拉伸液体中成核速率的不同方法。MD 模拟中获得的 J 值比 CNT 预测的值高 8 - 20 个数量级。通过 MD 模拟数据从 CNT 确定了临界气泡的形成功以及临界气泡 - 液体界面处表面张力γ(R*)的依赖性。获得的γ值已通过扩展的托尔曼公式进行近似,该公式除了线性校正外,还考虑了曲率的二次项。托尔曼长度δ∞为负,等于 - (0.1 - 0.2)σ。1/R*(2)的系数为正,且不超过σ²。

相似文献

1
Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.
J Chem Phys. 2014 May 14;140(18):184506. doi: 10.1063/1.4874644.
3
Spontaneous Crystallization of a Supercooled Lennard-Jones Liquid: Molecular Dynamics Simulation.
J Phys Chem B. 2019 Sep 26;123(38):8103-8112. doi: 10.1021/acs.jpcb.9b06618. Epub 2019 Sep 17.
4
Simple improvements to classical bubble nucleation models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022401. doi: 10.1103/PhysRevE.92.022401. Epub 2015 Aug 3.
5
Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
J Chem Phys. 2014 Jun 7;140(21):214317. doi: 10.1063/1.4880960.
6
Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052407. doi: 10.1103/PhysRevE.90.052407. Epub 2014 Nov 21.
9
Surface tension of cavitation bubbles.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2300499120. doi: 10.1073/pnas.2300499120. Epub 2023 Apr 6.
10
Homogeneous bubble nucleation driven by local hot spots: a molecular dynamics study.
J Phys Chem B. 2009 Mar 26;113(12):3776-84. doi: 10.1021/jp807727p.

引用本文的文献

1
Surface tension of cavitation bubbles.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2300499120. doi: 10.1073/pnas.2300499120. Epub 2023 Apr 6.
2
Hydrodynamic cavitation in Stokes flow of anisotropic fluids.
Nat Commun. 2017 May 30;8:15550. doi: 10.1038/ncomms15550.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验