Suppr超能文献

对经典气泡成核模型的简单改进。

Simple improvements to classical bubble nucleation models.

作者信息

Tanaka Kyoko K, Tanaka Hidekazu, Angélil Raymond, Diemand Jürg

机构信息

Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.

Institute for Computational Science, University of Zürich, 8057 Zürich, Switzerland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022401. doi: 10.1103/PhysRevE.92.022401. Epub 2015 Aug 3.

Abstract

We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

摘要

我们重新审视了关于均匀气泡成核速率的经典成核理论(CNT),并通过在成核速率中使用正确的前置因子改进了经典公式。此前的大多数理论研究都使用了由气泡表面蒸发过程导致的气泡生长所确定的恒定前置因子。然而,气泡的生长还受到热传导、粘度以及液体运动惯性的调节。这些效应会显著降低前置因子,尤其是当液体压力远小于平衡压力时。改进后的公式与CNT之间的成核速率偏差可能高达几个数量级。我们改进后的精确前置因子以及氩气泡成核的分子动力学模拟和实验室实验的最新进展,使我们能够精确地确定气泡成核的自由能垒。假设对CNT自由能的修正具有托尔曼所建议的函数形式,自由能垒的精确评估表明,对于氩气泡成核,托尔曼长度约为0.3σ,与温度无关,其中σ是 Lennard-Jones 势的单位长度。通过这种托尔曼修正和我们的前置因子,在当前实验和分子动力学模拟所探测的参数范围内,可以得到准确的气泡成核速率预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验