Pertsin Alexander, Grunze Michael
Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
J Chem Phys. 2014 May 14;140(18):184707. doi: 10.1063/1.4875020.
Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity.
支撑在二氧化硅和云母等亲水性固体上的磷脂双层在磷脂膜的基础研究和技术应用中发挥着重要作用。在这两种情况下,双层与支撑体之间的粘附分子机制是首要关注的问题。由于该特定领域实验方法的可能性相当有限,计算机模拟方法变得极为重要。在本文中,我们使用巨正则蒙特卡罗技术和原子力场来模拟云母支撑的磷脂双层在纯水中的行为,该行为是双层与支撑体之间距离的函数。模拟揭示了一种可能的粘附机制,其中粘附是由于从双层突出并与支撑体形成宽间距连接的单个脂质分子引起的。同时,双层通过保持双层流动性的薄水层与支撑体分离。