Suppr超能文献

利用无线体域网进行放射治疗中的肿瘤精确定位和跟踪。

Accurate tumor localization and tracking in radiation therapy using wireless body sensor networks.

机构信息

Wireless Health Institute, Department of Computer Science, University of California Los Angeles (UCLA), Los Angeles, CA 90024, USA.

Department of Electrical and Computer Engineering, Binghamton University, State University of New York, 4400 Vestal Pkwy East, Binghamton, NY 13902-6000, USA; Department of Bioengineering, Binghamton University, State University of New York, Binghamton, NY 13902-6000, USA.

出版信息

Comput Biol Med. 2014 Jul;50:41-8. doi: 10.1016/j.compbiomed.2014.04.008. Epub 2014 Apr 23.

Abstract

Radiation therapy is an effective method to combat cancerous tumors by killing the malignant cells or controlling their growth. Knowing the exact position of the tumor is a very critical prerequisite in radiation therapy. Since the position of the tumor changes during the process of radiation therapy due to the patient׳s movements and respiration, a real-time tumor tracking method is highly desirable in order to deliver a sufficient dose of radiation to the tumor region without damaging the surrounding healthy tissues. In this paper, we develop a novel tumor positioning method based on spatial sparsity. We estimate the position by processing the received signals from only one implantable RF transmitter. The proposed method uses less number of sensors compared to common magnetic transponder based approaches. The performance of the proposed method is evaluated in two different cases: (1) when the tissue configuration is perfectly determined (acquired beforehand by MRI or CT) and (2) when there are some uncertainties about the tissue boundaries. The results demonstrate the high accuracy and performance of the proposed method, even when the tissue boundaries are imperfectly known.

摘要

放射治疗是通过杀死恶性细胞或控制其生长来对抗癌性肿瘤的有效方法。在放射治疗中,准确了解肿瘤的位置是一个非常关键的前提条件。由于肿瘤在放射治疗过程中会因患者的运动和呼吸而发生位置变化,因此非常需要一种实时肿瘤跟踪方法,以便将足够剂量的辐射输送到肿瘤区域,同时又不损伤周围的健康组织。在本文中,我们开发了一种基于空间稀疏性的新型肿瘤定位方法。我们通过仅处理来自一个可植入 RF 发射器的接收信号来估计位置。与常见的基于磁转发器的方法相比,该方法使用的传感器数量更少。我们在两种不同情况下评估了所提出方法的性能:(1)当组织配置完全确定(通过 MRI 或 CT 事先获取)时;(2)当组织边界存在一些不确定性时。结果表明,即使组织边界不完全已知,该方法也具有很高的准确性和性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验