Suppr超能文献

特异腐质霉角质酶与十二烷基硫酸钠结合的热力学和结构研究。

Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase.

作者信息

Kold David, Dauter Zbigniew, Laustsen Anne K, Brzozowski Andrzej M, Turkenburg Johan P, Nielsen Anders D, Koldsø Heidi, Petersen Evamaria, Schiøtt Birgit, De Maria Leonardo, Wilson Keith S, Svendsen Allan, Wimmer Reinhard

机构信息

Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000, Aalborg, Denmark.

出版信息

Protein Sci. 2014 Aug;23(8):1023-35. doi: 10.1002/pro.2489. Epub 2014 Jun 16.

Abstract

The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka ≈ 10(5) M(-1) ). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad.

摘要

就工业生产的洗涤剂而言,脂解酶与阴离子表面活性剂之间的相互作用备受关注。在此,我们报道了嗜热真菌腐质霉角质酶与阴离子表面活性剂十二烷基硫酸钠(SDS)之间的相互作用,并表明在非变性浓度下该酶特异性结合单个SDS分子。通过核磁共振(NMR)、等温滴定量热法(ITC)和分子动力学模拟研究了蛋白质与SDS的相互作用。对该蛋白质的NMR共振峰进行了归属,发现蛋白质分子的大片段未显示任何可检测到的共振峰。结果表明,SDS以中等亲和力(Ka≈10⁵ M⁻¹)与围绕催化三联体的环特异性相互作用。其结合模式与之前观察到的两亲性分子和底物类似物与角质酶的结合模式非常相似,因此SDS起到了底物模拟物的作用。此外,通过X射线晶体学解析了该酶的无配体形式结构以及与对硝基苯磷酸二乙酯(DNPP)共结晶后形成的结构,后者形成了一个活性丝氨酸被单乙酯磷酸(MEP)酯化的复合物。该酶具有与其他角质酶报道的相同折叠结构,但出乎意料的是,活性位点丝氨酸的酯化伴随着活性位点组氨酸的乙基化,组氨酸从其在三联体中的通常位置翻转出来。

相似文献

1
Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase.
Protein Sci. 2014 Aug;23(8):1023-35. doi: 10.1002/pro.2489. Epub 2014 Jun 16.
5
Thermal stability of Humicola insolens cutinase in aqueous SDS.
J Phys Chem B. 2007 Mar 22;111(11):2941-7. doi: 10.1021/jp065896u. Epub 2007 Feb 24.
6
A Cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases.
J Mol Biol. 2014 Nov 11;426(22):3757-3772. doi: 10.1016/j.jmb.2014.09.003. Epub 2014 Sep 16.
9
Engineered Humicola insolens cutinase for efficient cellulose acetate deacetylation.
Biotechnol J. 2017 Aug;12(8). doi: 10.1002/biot.201700188. Epub 2017 Jun 1.
10
Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase.
Biochemistry. 2014 Mar 25;53(11):1858-69. doi: 10.1021/bi401561p. Epub 2014 Mar 13.

引用本文的文献

2
Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from .
Microorganisms. 2025 May 13;13(5):1121. doi: 10.3390/microorganisms13051121.
3
Discovery of two novel cutinases from a gut yeast of plastic-eating mealworm for polyester depolymerization.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0256224. doi: 10.1128/aem.02562-24. Epub 2025 Apr 2.
4
Recyclable Enzymatic Hydrolysis with Metal-Organic Framework Stabilized Humicola insolens Cutinase (HiC) for Potential PET Upcycling.
Chem Bio Eng. 2024 Aug 30;1(9):798-804. doi: 10.1021/cbe.4c00101. eCollection 2024 Oct 24.
5
PUR-GEN: A web server for automated generation of polyurethane fragment libraries.
Comput Struct Biotechnol J. 2024 Dec 12;27:127-136. doi: 10.1016/j.csbj.2024.12.004. eCollection 2025.
7
Synthesis of Isoamyl Fatty Acid Ester, a Flavor Compound, by Immobilized Cutinase.
J Microbiol Biotechnol. 2024 Jun 28;34(6):1356-1364. doi: 10.4014/jmb.2402.02033. Epub 2024 Apr 19.
8
Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes.
Front Microbiol. 2023 Oct 2;14:1265139. doi: 10.3389/fmicb.2023.1265139. eCollection 2023.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Presenting your structures: the CCP4mg molecular-graphics software.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):386-94. doi: 10.1107/S0907444911007281. Epub 2011 Mar 18.
3
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
4
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
5
Protein-surfactant interactions: a tale of many states.
Biochim Biophys Acta. 2011 May;1814(5):562-91. doi: 10.1016/j.bbapap.2011.03.003. Epub 2011 Mar 22.
7
Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Sep 1;65(Pt 9):862-5. doi: 10.1107/S1744309109030826. Epub 2009 Aug 20.
9
Crystallization and preliminary X-ray analysis of recombinant Glomerella cingulata cutinase.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Jun 1;64(Pt 6):504-8. doi: 10.1107/S1744309108012086. Epub 2008 May 23.
10
Global study of myoglobin-surfactant interactions.
Langmuir. 2008 Jan 15;24(2):399-407. doi: 10.1021/la702890y. Epub 2007 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验