School of Life and Environmental Sciences, Deakin University, PO Box 423, Warrnambool, Vic, 3280, Australia.
Glob Chang Biol. 2014 Nov;20(11):3471-81. doi: 10.1111/gcb.12634. Epub 2014 Jun 14.
Predicting ecological response to climate change is often limited by a lack of relevant local data from which directly applicable mechanistic models can be developed. This limits predictions to qualitative assessments or simplistic rules of thumb in data-poor regions, making management of the relevant systems difficult. We demonstrate a method for developing quantitative predictions of ecological response in data-poor ecosystems based on a space-for-time substitution, using distant, well-studied systems across an inherent climatic gradient to predict ecological response. Changes in biophysical data across the spatial gradient are used to generate quantitative hypotheses of temporal ecological responses that are then tested in a target region. Transferability of predictions among distant locations, the novel outcome of this method, is demonstrated via simple quantitative relationships that identify direct and indirect impacts of climate change on physical, chemical and ecological variables using commonly available data sources. Based on a limited subset of data, these relationships were demonstrably plausible in similar yet distant (>2000 km) ecosystems. Quantitative forecasts of ecological change based on climate-ecosystem relationships from distant regions provides a basis for research planning and informed management decisions, especially in the many ecosystems for which there are few data. This application of gradient studies across domains - to investigate ecological response to climate change - allows for the quantification of effects on potentially numerous, interacting and complex ecosystem components and how they may vary, especially over long time periods (e.g. decades). These quantitative and integrated long-term predictions will be of significant value to natural resource practitioners attempting to manage data-poor ecosystems to prevent or limit the loss of ecological value. The method is likely to be applicable to many ecosystem types, providing a robust scientific basis for estimating likely impacts of future climate change in ecosystems where no such method currently exists.
预测生态系统对气候变化的响应通常受到缺乏相关本地数据的限制,这些数据可用于开发直接适用的机制模型。这限制了在数据匮乏地区进行定性评估或采用简单的经验法则的预测,使得相关系统的管理变得困难。我们展示了一种基于时空替代的方法,利用遥远的、经过充分研究的系统跨越内在的气候梯度,来开发数据匮乏生态系统中生态响应的定量预测。在空间梯度上的生物物理数据变化被用来生成时间生态响应的定量假设,然后在目标区域进行测试。通过简单的定量关系,可以在遥远的地点之间进行预测的转移,这是该方法的新颖结果,这些关系可以识别气候变化对物理、化学和生态变量的直接和间接影响,使用常见的可用数据源。基于有限的数据子集,这些关系在类似但遥远(>2000 公里)的生态系统中是明显合理的。基于遥远地区气候-生态系统关系的生态变化定量预测为研究规划和明智的管理决策提供了基础,特别是对于那些数据很少的许多生态系统。这种跨领域的梯度研究——调查生态系统对气候变化的响应——可以量化对潜在的众多相互作用和复杂生态系统组成部分的影响,以及它们可能如何变化,特别是在很长的时间内(例如几十年)。这些定量和综合的长期预测将对自然资源从业者具有重要价值,他们试图管理数据匮乏的生态系统,以防止或限制生态价值的丧失。该方法可能适用于许多生态系统类型,为在目前尚无此类方法的生态系统中估计未来气候变化的可能影响提供了强有力的科学依据。