López M Isabel, Colomer Núria, Ruisánchez Itziar, Callao M Pilar
Chemometrics, Qualimetric and Nanosensors Grup, Department of Analytical and Organic Chemistry, Rovira i Virgili University, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
Chemometrics, Qualimetric and Nanosensors Grup, Department of Analytical and Organic Chemistry, Rovira i Virgili University, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
Anal Chim Acta. 2014 May 27;827:28-33. doi: 10.1016/j.aca.2014.04.019. Epub 2014 Apr 15.
Multivariate screening methods are increasingly being implemented but there is no worldwide harmonized criterion for their validation. This study contributes to establish protocols for validating these methodologies. We propose the following strategy: (1) Establish the multivariate classification model and use receiver operating characteristic (ROC) curves to optimize the significance level (α) for setting the model's boundaries. (2) Evaluate the performance parameter from the contingency table results and performance characteristic curves (PCC curves). The adulteration of hazelnut paste with almond paste and chickpea flour has been used as a case study. Samples were analyzed by infrared (IR) spectroscopy and the multivariate classification technique used was soft independent modeling of class analogies (SIMCA). The ROC study showed that the optimal α value for setting the SIMCA boundaries was 0.03 in both cases. The sensitivity value was 93%, specificity 100% for almond and 98% for chickpea, and efficiency 97% for almond and 93% for chickpea.
多变量筛选方法的应用越来越广泛,但目前尚无全球统一的验证标准。本研究致力于建立这些方法的验证方案。我们提出以下策略:(1)建立多变量分类模型,并使用受试者工作特征(ROC)曲线来优化设定模型边界的显著性水平(α)。(2)根据列联表结果和性能特征曲线(PCC曲线)评估性能参数。以榛子酱中掺假杏仁酱和鹰嘴豆粉为例进行了研究。采用红外(IR)光谱对样品进行分析,所使用的多变量分类技术为类类比软独立建模(SIMCA)。ROC研究表明,在两种情况下,设定SIMCA边界的最佳α值均为0.03。杏仁的灵敏度值为93%,特异性为100%;鹰嘴豆的灵敏度值为93%,特异性为98%;杏仁的效率为97%,鹰嘴豆的效率为93%。