Suppr超能文献

对诱发的模态、抬高和压迫兔发声进行非线性分析。

Nonlinear analyses of elicited modal, raised, and pressed rabbit phonation.

作者信息

Awan Shaheen N, Novaleski Carolyn K, Rousseau Bernard

机构信息

Department of Audiology and Speech Pathology, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania.

Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee.

出版信息

J Voice. 2014 Sep;28(5):538-47. doi: 10.1016/j.jvoice.2014.01.015. Epub 2014 May 16.

Abstract

OBJECTIVES/HYPOTHESIS: The purpose of this study was to use nonlinear dynamic analysis methods such as phase space portraits and correlation dimension (D2) as well as descriptive spectrographic analyses to characterize acoustic signals produced during evoked rabbit phonation.

METHODS

Seventeen New Zealand white breeder rabbits were used to perform the study. A Grass S-88 stimulator (SA Instrumentation, Encinitas, CA) and constant current isolation unit (Grass Telefactor, model PSIU6; West Warwick, RI) were used to provide electrical stimulation to laryngeal musculature, and transglottal airflow rate and stimulation current (mA) were manipulated to elicit modal, raised intensity, and pressed phonations. Central 1 second portions of the most stable portion of the acoustic waveform for modal, raised intensity, and pressed phonations were edited and then analyzed via phase space portraits, Poincaré sections, and the estimation of the D2. In an attempt to limit the effects of the highly variable and nonstationary characteristics of some of the signals being analyzed, D2 analysis was also performed on the most stable central 200-millisecond portion of the acoustic waveform. Descriptive analysis of each phonation was also conducted using sound spectrograms.

RESULTS

Results showed that the complexity of phonation and the subsequent acoustic waveform is increased as transglottal airflow rate and degree of glottal adduction are manipulated in the evoked rabbit phonation model. In particular, phonatory complexity, as quantified via D2 analyses and demonstrated via spectrographic characteristics, increases from "modal" (ie, phonation elicited at just above the phonation threshold pressure) to raised intensity (phonation elicited by increasing transglottal airflow rate) to pressed (phonation elicited by increasing the stimulation current delivered to the larynx). Variations in a single dynamic dimension (airflow rate or adductory force) resulted in significantly increased productions of nonlinear phenomenon, including bifurcations from periodicity to regions of subharmonic content, fundamental frequency, and harmonic jumps, and evidence of periodicity within aperiodic regions ("chaos").

CONCLUSIONS

The evoked rabbit phonation model described in this study allows for the elicitation of various types of phonations under controlled conditions and, therefore, has the potential to provide insight regarding important variables that may elicit examples of nonlinear phenomena such as subharmonics and deterministic chaos.

摘要

目的/假设:本研究的目的是使用非线性动态分析方法,如相空间图和关联维数(D2),以及描述性频谱分析来表征诱发兔发声时产生的声学信号。

方法

使用17只新西兰白色种兔进行本研究。使用Grass S - 88刺激器(SA仪器公司,加利福尼亚州恩西尼塔斯)和恒流隔离单元(Grass Telefactor,型号PSIU6;罗德岛州韦斯特沃里克)对喉肌组织进行电刺激,并控制经声门气流速率和刺激电流(毫安)以引发模态发声、增强强度发声和挤压发声。对模态发声、增强强度发声和挤压发声的声学波形最稳定部分的中间1秒片段进行编辑,然后通过相空间图、庞加莱截面和D2估计进行分析。为了限制某些被分析信号的高度可变和非平稳特性的影响,还对声学波形最稳定的中间200毫秒片段进行了D2分析。还使用声谱图对每种发声进行了描述性分析。

结果

结果表明,在诱发兔发声模型中,随着经声门气流速率和声门内收程度的变化,发声和随后的声学波形的复杂性增加。特别是,通过D2分析量化并通过频谱特征证明的发声复杂性,从“模态”(即在略高于发声阈值压力时诱发的发声)增加到增强强度发声(通过增加经声门气流速率诱发的发声)再到挤压发声(通过增加传递到喉部的刺激电流诱发的发声)。单一动态维度(气流速率或内收力)的变化导致非线性现象的产生显著增加,包括从周期性到次谐波含量、基频和谐波跳跃区域的分岔,以及非周期性区域内的周期性证据(“混沌”)。

结论

本研究中描述的诱发兔发声模型允许在受控条件下诱发各种类型的发声,因此有可能提供关于可能引发非线性现象(如次谐波和确定性混沌)示例的重要变量的见解。

相似文献

1
Nonlinear analyses of elicited modal, raised, and pressed rabbit phonation.
J Voice. 2014 Sep;28(5):538-47. doi: 10.1016/j.jvoice.2014.01.015. Epub 2014 May 16.
2
Nonstimulated rabbit phonation model: Cricothyroid approximation.
Laryngoscope. 2016 Jul;126(7):1589-94. doi: 10.1002/lary.25559. Epub 2016 Mar 12.
3
Model of evoked rabbit phonation.
Ann Otol Rhinol Laryngol. 2009 Jan;118(1):51-5. doi: 10.1177/000348940911800109.
4
Nonlinear dynamic-based analysis of severe dysphonia in patients with vocal fold scar and sulcus vocalis.
J Voice. 2012 Sep;26(5):566-76. doi: 10.1016/j.jvoice.2011.09.006. Epub 2012 Apr 18.
5
Relationship of Various Open Quotients With Acoustic Property, Phonation Types, Fundamental Frequency, and Intensity.
J Voice. 2016 Mar;30(2):145-57. doi: 10.1016/j.jvoice.2015.01.009. Epub 2015 May 4.
6
Characterization of raised phonation in an evoked rabbit phonation model.
Laryngoscope. 2009 Jul;119(7):1439-43. doi: 10.1002/lary.20532.
8
Air Pressure and Contact Quotient Measures During Different Semioccluded Postures in Subjects With Different Voice Conditions.
J Voice. 2016 Nov;30(6):759.e1-759.e10. doi: 10.1016/j.jvoice.2015.09.010. Epub 2016 Jun 13.
9
Nonlinear dynamics of phonations in excised larynx experiments.
J Acoust Soc Am. 2003 Oct;114(4 Pt 1):2198-205. doi: 10.1121/1.1610462.
10
Long term phonatory function following acoustic neuroma surgery: a cohort study.
Acta Otolaryngol. 2020 Aug;140(8):646-650. doi: 10.1080/00016489.2020.1755054. Epub 2020 Apr 29.

引用本文的文献

1
Nonlinear phenomena in mammalian vocal communication: an introduction and scoping review.
Philos Trans R Soc Lond B Biol Sci. 2025 Apr 3;380(1923):20240017. doi: 10.1098/rstb.2024.0017.
2
Corticosteroid-LABA inhalers increase phonation threshold pressure (PTP) and flow (PTF) in rabbits.
Laryngoscope. 2023 Oct;133(10):2680-2686. doi: 10.1002/lary.30585. Epub 2023 Feb 9.
3
Evaluating the Voice Type Component Distributions of Excised Larynx Phonations at Three Subglottal Pressures.
J Speech Lang Hear Res. 2021 May 11;64(5):1447-1456. doi: 10.1044/2021_JSLHR-20-00429. Epub 2021 Apr 22.
4
Investigation of phonatory characteristics using ex vivo rabbit larynges.
J Acoust Soc Am. 2018 Jul;144(1):142. doi: 10.1121/1.5043384.
5
Applied Chaos Level Test for Validation of Signal Conditions Underlying Optimal Performance of Voice Classification Methods.
J Speech Lang Hear Res. 2018 May 17;61(5):1130-1139. doi: 10.1044/2018_JSLHR-S-17-0250.
6
Nonstimulated rabbit phonation model: Cricothyroid approximation.
Laryngoscope. 2016 Jul;126(7):1589-94. doi: 10.1002/lary.25559. Epub 2016 Mar 12.

本文引用的文献

1
Visualization of system dynamics using phasegrams.
J R Soc Interface. 2013 May 22;10(85):20130288. doi: 10.1098/rsif.2013.0288. Print 2013 Aug 6.
2
Use of the rabbit larynx in an excised larynx setup.
J Voice. 2013 Jan;27(1):24-8. doi: 10.1016/j.jvoice.2012.08.004. Epub 2012 Nov 15.
3
How low can you go? Physical production mechanism of elephant infrasonic vocalizations.
Science. 2012 Aug 3;337(6094):595-9. doi: 10.1126/science.1219712.
4
Objective methods of sample selection in acoustic analysis of voice.
Ann Otol Rhinol Laryngol. 2011 Mar;120(3):155-61. doi: 10.1177/000348941112000303.
5
Raised intensity phonation compromises vocal fold epithelial barrier integrity.
Laryngoscope. 2011 Feb;121(2):346-51. doi: 10.1002/lary.21364. Epub 2011 Jan 13.
6
Effects of raised-intensity phonation on inflammatory mediator gene expression in normal rabbit vocal fold.
Otolaryngol Head Neck Surg. 2010 Oct;143(4):567-72. doi: 10.1016/j.otohns.2010.04.264.
7
Updating signal typing in voice: addition of type 4 signals.
J Acoust Soc Am. 2010 Jun;127(6):3710-16. doi: 10.1121/1.3397477.
8
Interspecies comparison of mucosal wave properties using high-speed digital imaging.
Laryngoscope. 2010 Jun;120(6):1188-94. doi: 10.1002/lary.20884.
9
Perturbation and nonlinear dynamic analysis of adult male smokers.
J Voice. 2011 May;25(3):342-7. doi: 10.1016/j.jvoice.2010.01.006. Epub 2010 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验