Suppr超能文献

诱发兔发声模型。

Model of evoked rabbit phonation.

作者信息

Ge Ping Jiang, French Lesley C, Ohno Tsunehisa, Zealear David L, Rousseau Bernard

机构信息

Department of Otolaryngology, Vanderbilt University Bill Wilkerson Center for Otolaryngology and Communication Sciences, Nashville, Tennessee 37232-4480, USA.

出版信息

Ann Otol Rhinol Laryngol. 2009 Jan;118(1):51-5. doi: 10.1177/000348940911800109.

Abstract

OBJECTIVES

We describe a method for eliciting phonation in an in vivo rabbit preparation using low-frequency, bipolar pulsed stimulation of the cricothyroid muscles with airflow delivered to the glottis.

METHODS

Ten New Zealand White breeder rabbits weighing 3 to 5 kg were used in this study. The cricothyroid muscles were isolated bilaterally, and separate pairs of anode-cathode hooked-wire electrodes were inserted into each muscle. A Grass S-88 stimulator and 2 constant-current PSIU6 isolation units were used to deliver bipolar square wave pulses to each cricothyroid muscle, with airflow delivered to the glottis through a cuffed endotracheal tube.

RESULTS

Phonation was evoked with a 50-Hz, 4-mA stimulus train of 1-ms pulses delivered to each cricothyroid muscle. The pulse trains were on for 2 seconds and were repeated every 5 seconds over a period of 180 minutes. Airflow was delivered at 143 cm3/s, producing phonation measuring 71 to 85 dB sound pressure level.

CONCLUSIONS

Evoked phonation is feasible in rabbits by use of bipolar stimulation of the cricothyroid muscles with airflow delivered to the glottis. The in vivo rabbit preparation described may provide a useful small animal option for studies of evoked phonation. From the level and consistency of the adduction observed, we hypothesize that current spreading to the underlying adductor muscles and nerves resulted in neural pathway involvement beyond discrete activation of the cricothyroid muscle, providing sufficient approximation of the vocal folds for phonation.

摘要

目的

我们描述了一种在活体兔制备中引发发声的方法,即通过对环甲肌进行低频双极脉冲刺激,并向声门输送气流。

方法

本研究使用了10只体重3至5千克的新西兰白兔种兔。双侧分离出环甲肌,将成对的阳极-阴极钩状线电极分别插入每块肌肉。使用Grass S-88刺激器和2个恒流PSIU6隔离单元向每块环甲肌输送双极方波脉冲,气流通过带套囊的气管内导管输送至声门。

结果

向每块环甲肌输送频率为50赫兹、电流为4毫安、脉冲宽度为1毫秒的刺激序列可引发发声。脉冲序列持续2秒,在180分钟内每5秒重复一次。气流以143立方厘米/秒的速度输送,产生的发声声压级为71至85分贝。

结论

通过对环甲肌进行双极刺激并向声门输送气流,在兔中引发发声是可行且一致的。所描述的活体兔制备可为诱发发声的研究提供一种有用的小动物模型。从观察到的内收程度和一致性来看,我们推测电流扩散到下方的内收肌和神经导致神经通路参与,超出了环甲肌的离散激活,为发声提供了足够的声带近似度。

相似文献

1
Model of evoked rabbit phonation.
Ann Otol Rhinol Laryngol. 2009 Jan;118(1):51-5. doi: 10.1177/000348940911800109.
2
Nonstimulated rabbit phonation model: Cricothyroid approximation.
Laryngoscope. 2016 Jul;126(7):1589-94. doi: 10.1002/lary.25559. Epub 2016 Mar 12.
3
Nonlinear analyses of elicited modal, raised, and pressed rabbit phonation.
J Voice. 2014 Sep;28(5):538-47. doi: 10.1016/j.jvoice.2014.01.015. Epub 2014 May 16.
4
Characterization of raised phonation in an evoked rabbit phonation model.
Laryngoscope. 2009 Jul;119(7):1439-43. doi: 10.1002/lary.20532.
5
Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
Otolaryngol Head Neck Surg. 1993 Dec;109(6):1043-51. doi: 10.1177/019459989310900612.
7
Rabbit model with vocal fold hyperadduction.
Auris Nasus Larynx. 2022 Oct;49(5):810-815. doi: 10.1016/j.anl.2022.01.008. Epub 2022 Jan 31.
8
Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.
Surg Radiol Anat. 2017 Mar;39(3):257-262. doi: 10.1007/s00276-016-1738-2. Epub 2016 Sep 6.
9
Survival in Vivo Canine Phonation Model Without Stimulation.
Ann Otol Rhinol Laryngol. 2018 Mar;127(3):178-184. doi: 10.1177/0003489417751473. Epub 2018 Jan 3.
10
Preliminary Study of the Open Quotient in an Ex Vivo Perfused Human Larynx.
JAMA Otolaryngol Head Neck Surg. 2015 Aug;141(8):751-6. doi: 10.1001/jamaoto.2015.1249.

引用本文的文献

2
Subject-Specific Modeling of Implant Placement for Type I Thyroplasty Surgery.
Ann Biomed Eng. 2023 Oct;51(10):2182-2191. doi: 10.1007/s10439-023-03250-w. Epub 2023 Jun 1.
3
Custom Laser-Cut Silastic® Implants for Type I Thyroplasty in a Preclinical Model.
ORL J Otorhinolaryngol Relat Spec. 2023;85(5):294-298. doi: 10.1159/000530419. Epub 2023 May 11.
4
Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
Fluids (Basel). 2022 Mar;7(3). doi: 10.3390/fluids7030097. Epub 2022 Mar 6.
5
Effect of application of fibrin glue on vocal fold healing after surgical manipulation in rabbits.
Braz J Otorhinolaryngol. 2022 Nov-Dec;88 Suppl 1(Suppl 1):S102-S107. doi: 10.1016/j.bjorl.2021.04.005. Epub 2021 May 6.
6
Protein Substrate Alters Cell Physiology in Primary Culture of Vocal Fold Epithelial Cells.
Cells Tissues Organs. 2021;210(1):10-23. doi: 10.1159/000514200. Epub 2021 Apr 28.
7
A Comparison of the Localization of Integral Membrane Proteins in Human and Rabbit Vocal Folds.
Laryngoscope. 2021 Apr;131(4):E1265-E1271. doi: 10.1002/lary.29243. Epub 2020 Nov 6.
8
A reduced-order flow model for vocal fold vibration: from idealized to subject-specific models.
J Fluids Struct. 2020 Apr;94. doi: 10.1016/j.jfluidstructs.2020.102940. Epub 2020 Feb 25.
10
Investigation of phonatory characteristics using ex vivo rabbit larynges.
J Acoust Soc Am. 2018 Jul;144(1):142. doi: 10.1121/1.5043384.

本文引用的文献

1
Experimentally induced phonation increases matrix metalloproteinase-1 gene expression in normal rabbit vocal fold.
Otolaryngol Head Neck Surg. 2008 Jan;138(1):62-8. doi: 10.1016/j.otohns.2007.10.024.
2
Acute vocal fold wound healing in a rabbit model.
Ann Otol Rhinol Laryngol. 2005 Jan;114(1 Pt 1):19-24. doi: 10.1177/000348940511400105.
3
Prevention of vocal fold scarring by topical injection of hepatocyte growth factor in a rabbit model.
Laryngoscope. 2004 Mar;114(3):548-56. doi: 10.1097/00005537-200403000-00030.
4
Characterization of chronic vocal fold scarring in a rabbit model.
J Voice. 2004 Mar;18(1):116-24. doi: 10.1016/j.jvoice.2003.06.001.
5
Intralaryngeal neuroanatomy of the recurrent laryngeal nerve of the rabbit.
J Anat. 2003 May;202(5):421-30. doi: 10.1046/j.1469-7580.2003.00177.x.
6
Histologic and rheologic characterization of vocal fold scarring.
J Voice. 2002 Mar;16(1):96-104. doi: 10.1016/s0892-1997(02)00078-4.
7
Long-term model of induced canine phonation.
Otolaryngol Head Neck Surg. 1998 Apr;118(4):512-22. doi: 10.1177/019459989811800413.
8
Electrical pacing of the paralyzed human larynx.
Ann Otol Rhinol Laryngol. 1996 Sep;105(9):689-93. doi: 10.1177/000348949610500904.
9
Sound levels in rooms housing laboratory animals: an uncontrolled daily variable.
Physiol Behav. 1993 Jun;53(6):1067-76. doi: 10.1016/0031-9384(93)90361-i.
10
Technical approach for reanimation of the chronically denervated larynx by means of functional electrical stimulation.
Ann Otol Rhinol Laryngol. 1994 Sep;103(9):705-12. doi: 10.1177/000348949410300908.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验