Zhao H, Fan Z, Liang H, Selopal G S, Gonfa B A, Jin L, Soudi A, Cui D, Enrichi F, Natile M M, Concina I, Ma D, Govorov A O, Rosei F, Vomiero A
CNR-INO SENSOR Lab, Via Branze 45, 25123 Brescia, Italy.
Nanoscale. 2014 Jun 21;6(12):7004-11. doi: 10.1039/c4nr01562b.
N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS QDs, but can negatively affect photoinduced charge transfer from the QD to the oxide and the resulting photoconversion efficiency (PCE). For this reason, the characterization of electron injection rates in these systems is very important, yet has never been reported. Here we investigate the photoelectron transfer rate from PbS@CdS core@shell QDs to wide bandgap semiconducting mesoporous films using photoluminescence (PL) lifetime spectroscopy. The different electron affinity of the oxides (SiO2, TiO2 and SnO2), the core size and the shell thickness allow us to fine tune the electron injection rate by determining the width and height of the energy barrier for tunneling from the core to the oxide. Theoretical modeling using the semi-classical approximation provides an estimate for the escape time of an electron from the QD 1S state, in good agreement with experiments. The results demonstrate the possibility of obtaining fast charge injection in near infrared (NIR) QDs stabilized by an external shell (injection rates in the range of 110-250 ns for TiO2 films and in the range of 100-170 ns for SnO2 films for PbS cores with diameters in the 3-4.2 nm range and shell thickness around 0.3 nm), with the aim of providing viable solutions to the stability issues typical of NIR QDs capped with pure organic ligand shells.
由吸收红外光的硫化铅量子点(QDs)敏化的N型金属氧化物太阳能电池是传统光伏器件的一个有前途的替代方案。然而,用纯有机配体壳包覆的胶体硫化铅量子点存在表面氧化问题,这会影响电池的长期稳定性。应用钝化硫化镉壳可确保硫化铅量子点的长期稳定性提高,但会对从量子点到氧化物的光致电荷转移以及由此产生的光电转换效率(PCE)产生负面影响。因此,表征这些系统中的电子注入速率非常重要,但从未有过相关报道。在这里,我们使用光致发光(PL)寿命光谱研究了从硫化铅@硫化镉核壳量子点到宽带隙半导体介孔膜的光电子转移速率。氧化物(二氧化硅、二氧化钛和二氧化锡)的不同电子亲和力、核尺寸和壳厚度使我们能够通过确定从核到氧化物隧穿的能垒宽度和高度来微调电子注入速率。使用半经典近似的理论建模提供了电子从量子点1S态逃逸时间的估计值,与实验结果吻合良好。结果表明,对于直径在3 - 4.2 nm范围内且壳厚度约为0.3 nm的硫化铅核,在由外壳稳定的近红外(NIR)量子点中获得快速电荷注入是可能的(对于二氧化钛膜,注入速率在110 - 250 ns范围内;对于二氧化锡膜,注入速率在100 - 170 ns范围内),目的是为纯有机配体壳包覆的近红外量子点典型的稳定性问题提供可行的解决方案。