Ballabio Marco, Cánovas Enrique
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
ACS Nanosci Au. 2022 Oct 19;2(5):367-395. doi: 10.1021/acsnanoscienceau.2c00015. Epub 2022 Jun 22.
Electron transfer at a donor-acceptor quantum dot-metal oxide interface is a process fundamentally relevant to solar energy conversion architectures as, e.g., sensitized solar cells and solar fuels schemes. As kinetic competition at these technologically relevant interfaces largely determines device performance, this Review surveys several aspects linking electron transfer dynamics and device efficiency; this correlation is done for systems aiming for efficiencies up to and above the ∼33% efficiency limit set by Shockley and Queisser for single gap devices. Furthermore, we critically comment on common pitfalls associated with the interpretation of kinetic data obtained from current methodologies and experimental approaches, and finally, we highlight works that, to our judgment, have contributed to a better understanding of the fundamentals governing electron transfer at quantum dot-metal oxide interfaces.
供体-受体量子点-金属氧化物界面处的电子转移是一个与太阳能转换架构(如敏化太阳能电池和太阳能燃料方案)根本相关的过程。由于这些技术相关界面处的动力学竞争在很大程度上决定了器件性能,本综述考察了将电子转移动力学与器件效率联系起来的几个方面;针对旨在达到并超过由肖克利和奎塞尔为单隙器件设定的约33%效率极限的系统进行了这种关联。此外,我们批判性地评论了与从当前方法和实验途径获得的动力学数据解释相关的常见陷阱,最后,我们强调了据我们判断有助于更好地理解量子点-金属氧化物界面处电子转移基本原理的研究工作。