Suppr超能文献

随机建模与可预测性:低阶耦合海气模式分析。

Stochastic modelling and predictability: analysis of a low-order coupled ocean-atmosphere model.

机构信息

Institut Royal Météorologique de Belgique, Avenue circulaire 3, 1180 Brussels, Belgium

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Jun 28;372(2018):20130282. doi: 10.1098/rsta.2013.0282.

Abstract

There is a growing interest in developing stochastic schemes for the description of processes that are poorly represented in atmospheric and climate models, in order to increase their variability and reduce the impact of model errors. The use of such noise could however have adverse effects by modifying in undesired ways a certain number of moments of their probability distributions. In this work, the impact of developing a stochastic scheme (based on stochastic averaging) for the ocean is explored in the context of a low-order coupled (deterministic) ocean-atmosphere system. After briefly analysing its variability, its ability in predicting the oceanic flow generated by the coupled system is investigated. Different phases in the error dynamics are found: for short lead times, an initial overdispersion of the ensemble forecast is present while the ensemble mean follows a dynamics reminiscent of the combined amplification of initial condition and model errors for deterministic systems; for longer lead times, a reliable diffusive ensemble spread is observed. These different phases are also found for ensemble-oriented skill measures like the Brier score and the rank histogram. The implications of these features on building stochastic models are then briefly discussed.

摘要

人们越来越感兴趣的是开发随机方案来描述大气和气候模型中代表性较差的过程,以增加它们的可变性并减少模型误差的影响。然而,使用这种噪声可能会产生不利影响,因为它会以不希望的方式修改其概率分布的某些矩。在这项工作中,探讨了在一个低阶耦合(确定性)海洋-大气系统的背景下,为海洋开发随机方案(基于随机平均)的影响。在简要分析其可变性之后,研究了它在预测耦合系统产生的海洋流方面的能力。在误差动态中发现了不同的阶段:在短的前置时间内,集合预报存在初始过分散,而集合平均值遵循类似于确定性系统中初始条件和模型误差的综合放大的动力学;在较长的前置时间内,观察到可靠的扩散集合扩展。这些不同的阶段也在面向集合的技能度量中发现,如 Brier 得分和等级直方图。然后简要讨论了这些特征对构建随机模型的影响。

相似文献

1
Stochastic modelling and predictability: analysis of a low-order coupled ocean-atmosphere model.
Philos Trans A Math Phys Eng Sci. 2014 Jun 28;372(2018):20130282. doi: 10.1098/rsta.2013.0282.
2
Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.
Philos Trans A Math Phys Eng Sci. 2014 Jun 28;372(2018):20130290. doi: 10.1098/rsta.2013.0290.
3
Ocean eddies and climate predictability.
Chaos. 2017 Dec;27(12):126902. doi: 10.1063/1.4990034.
4
Sensitivity of winter North Atlantic-European climate to resolved atmosphere and ocean dynamics.
Sci Rep. 2019 Sep 16;9(1):13358. doi: 10.1038/s41598-019-49865-9.
6
Enhanced regime predictability in atmospheric low-order models due to stochastic forcing.
Philos Trans A Math Phys Eng Sci. 2014 Jun 28;372(2018):20130286. doi: 10.1098/rsta.2013.0286.
8
Predictability of El Niño over the past 148 years.
Nature. 2004 Apr 15;428(6984):733-6. doi: 10.1038/nature02439.
9
Influence of stochastic sea ice parametrization on climate and the role of atmosphere-sea ice-ocean interaction.
Philos Trans A Math Phys Eng Sci. 2014 Jun 28;372(2018):20130283. doi: 10.1098/rsta.2013.0283.
10
Thermodynamic controls of the Atlantic Niño.
Nat Commun. 2015 Nov 26;6:8895. doi: 10.1038/ncomms9895.

引用本文的文献

1
The hammam effect or how a warm ocean enhances large scale atmospheric predictability.
Nat Commun. 2019 Mar 21;10(1):1316. doi: 10.1038/s41467-019-09305-8.

本文引用的文献

1
Sensitivity to initial conditions in stochastic systems.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Jan;47(1):155-163. doi: 10.1103/physreve.47.155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验