Suppr超能文献

一种准随机元胞自动机后向散射方案对全球气候模式系统误差和季节预测技巧的影响

Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model.

作者信息

Berner J, Doblas-Reyes F J, Palmer T N, Shutts G, Weisheimer A

机构信息

European Centre for Medium Range Weather Forecasts (ECMWF), Shinfield Park, Reading RG2 9AX, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2008 Jul 28;366(1875):2561-79. doi: 10.1098/rsta.2008.0033.

Abstract

The impact of a nonlinear dynamic cellular automaton (CA) model, as a representation of the partially stochastic aspects of unresolved scales in global climate models, is studied in the European Centre for Medium Range Weather Forecasts coupled ocean-atmosphere model. Two separate aspects are discussed: impact on the systematic error of the model, and impact on the skill of seasonal forecasts. Significant reductions of systematic error are found both in the tropics and in the extratropics. Such reductions can be understood in terms of the inherently nonlinear nature of climate, in particular how energy injected by the CA at the near-grid scale can backscatter nonlinearly to larger scales. In addition, significant improvements in the probabilistic skill of seasonal forecasts are found in terms of a number of different variables such as temperature, precipitation and sea-level pressure. Such increases in skill can be understood both in terms of the reduction of systematic error as mentioned above, and in terms of the impact on ensemble spread of the CA's representation of inherent model uncertainty.

摘要

在欧洲中期天气预报中心的耦合海洋-大气模型中,研究了非线性动态细胞自动机(CA)模型作为全球气候模型中未解决尺度部分随机方面的一种表示形式所产生的影响。讨论了两个不同的方面:对模型系统误差的影响以及对季节预报技巧的影响。在热带地区和温带地区都发现系统误差有显著降低。这种降低可以根据气候固有的非线性性质来理解,特别是CA在近网格尺度注入的能量如何非线性地反向散射到更大尺度。此外,在温度、降水和海平面压力等多个不同变量方面,季节预报的概率技巧有显著提高。技巧的这种提高既可以根据上述系统误差的降低来理解,也可以根据CA对固有模型不确定性的表示对集合离散度的影响来理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验