Sheppard A, Hayes S H, Chen G-D, Ralli M, Salvi R
Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, USA.
Institute of Otolaryngology, Catholic University of Sacred Heart Rome, Italy.
Acta Otorhinolaryngol Ital. 2014 Apr;34(2):79-93.
Salicylate's ototoxic properties have been well established, inducing tinnitus and a sensory hearing loss when administered in high doses. Peripherally, acute dosing of salicylate causes frequency dependent reductions in DPOAEs and CAP amplitudes in low (<10 kHz) and high (>20 kHz) frequencies more than mid frequencies (10-20 kHz), which interestingly corresponds to the pitch of behaviourally-matched salicylate-induced tinnitus. Chronic salicylate dosing affects the peripheral system by causing a compensatory temporary enhancement in DPOAE amplitudes and up-regulation of prestin mRNA and protein expression. Despite salicylate's antioxidant properties, cultured cochlea studies indicate it also impairs spiral ganglion neurons (SGNs) by paradoxically causing an upsurge of superoxide radicals leading to apoptosis. Centrally, salicylate alters γ-aminobutyric acid (GABA) and serotonin mediated neurotransmission in the central nervous system (CNS), which results in classical and non-classical auditory regions showing hyperactivity after salicylate administration. In the auditory cortex (AC) and lateral amygdala (LA), neuron characteristic frequencies (CF) shift upward and downward to mid frequencies (10-20 kHz) altering tonotopy following salicylate administration. Additionally, current source density (CSD) analysis showed enhanced current flow into the supergranular layer of the auditory cortex after a high systemic dose of salicylate. In humans, auditory perception changes following salicylate or aspirin, including decreased word discrimination and temporal integration ability. The results of previous studies have partially identified the mechanisms that are involved in salicylate-induced tinnitus and hearing loss, however to date some interactions remain convoluted. This review discusses current knowledge of salicylate ototoxicity and interactions.
水杨酸盐的耳毒性特性已得到充分证实,高剂量给药时会引发耳鸣和感觉神经性听力损失。在周围神经系统,急性给予水杨酸盐会导致低频(<10 kHz)和高频(>20 kHz)的畸变产物耳声发射(DPOAE)和复合动作电位(CAP)幅度出现频率依赖性降低,且低频和高频的降低幅度大于中频(10 - 20 kHz),有趣的是,这与行为学上匹配的水杨酸盐诱导耳鸣的音调相对应。慢性给予水杨酸盐会影响周围系统,导致DPOAE幅度出现代偿性暂时增强以及prestin mRNA和蛋白表达上调。尽管水杨酸盐具有抗氧化特性,但耳蜗培养研究表明,它还会反常地导致超氧自由基激增,进而引发细胞凋亡,从而损害螺旋神经节神经元(SGN)。在中枢神经系统,水杨酸盐会改变γ-氨基丁酸(GABA)和5-羟色胺介导的神经传递,这导致在给予水杨酸盐后,经典和非经典听觉区域出现活动亢进。在听觉皮层(AC)和外侧杏仁核(LA),给予水杨酸盐后,神经元特征频率(CF)会向上和向下移动至中频(10 - 20 kHz),从而改变音频定位。此外,电流源密度(CSD)分析显示,全身高剂量给予水杨酸盐后,流入听觉皮层颗粒上层的电流增强。在人类中,服用水杨酸盐或阿司匹林后听觉感知会发生变化,包括单词辨别能力和时间整合能力下降。先前研究的结果已部分确定了水杨酸盐诱导耳鸣和听力损失所涉及的机制,然而迄今为止,一些相互作用仍很复杂。本综述讨论了关于水杨酸盐耳毒性及其相互作用的现有知识。
Acta Otorhinolaryngol Ital. 2014-4
Prog Neurobiol. 2000-12
Brain Res. 2012-3-13
Hear Res. 2003-9
Curr Top Behav Neurosci. 2021
Basic Clin Pharmacol Toxicol. 2025-9
Indian J Otolaryngol Head Neck Surg. 2023-12
J Thromb Thrombolysis. 2023-10
Int J Mol Sci. 2022-11-16
J Cancer Res Clin Oncol. 2023-5
Curr Pain Headache Rep. 2022-7
Front Syst Neurosci. 2012-4-20
Brain Res. 2012-3-13
Neuroscience. 2011-6-12
Neurosci Lett. 2010-5-15
Neuroscience. 2010-3-15