Nishi Masahiro, Nanjo Kishio
Department of Metabolism and Clinical Nutrition, Wakayama Medical University.
Research Center of Rural Medicine, Nachi-Katsuura Spa Hospital, Wakayama, Japan.
J Diabetes Investig. 2011 Apr 7;2(2):92-100. doi: 10.1111/j.2040-1124.2011.00100.x.
Some mutations of the insulin gene cause hyperinsulinemia or hyperproinsulinemia. Replacement of biologically important amino acid leads to defective receptor binding, longer half-life and hyperinsulinemia. Three mutant insulins have been identified: (i) insulin Chicago (F49L or PheB25Leu); (ii) insulin Los Angeles (F48S or PheB24Ser); (iii) and insulin Wakayama (V92L or ValA3Leu). Replacement of amino acid is necessary for proinsulin processing results in hyperproinsulinemia. Four types have been identified: (i) proinsulin Providence (H34D); (ii) proinsulin Tokyo (R89H); (iii) proinsulin Kyoto (R89L); and (iv) proinsulin Oxford (R89P). Three of these are processing site mutations. The mutation of proinsulin Providence, in contrast, is thought to cause sorting abnormality. Compared with normal proinsulin, a significant amount of proinsulin Providence enters the constitutive pathway where processing does not occur. These insulin gene mutations with hyper(pro)insulinemia were very rare, showed only mild diabetes or glucose intolerance, and hyper(pro)insulinemia was the key for their diagnosis. However, this situation changed dramatically after the identification of insulin gene mutations as a cause of neonatal diabetes. This class of insulin gene mutations does not show hyper(pro)insulinemia. Mutations at the cysteine residue or creating a new cysteine will disturb the correct disulfide bonding and proper conformation, and finally will lead to misfolded proinsulin accumulation, endoplasmic reticulum stress and apoptosis of pancreatic β-cells. Maturity-onset diabetes of the young (MODY) or an autoantibody-negative type 1-like phenotype has also been reported. Very recently, recessive mutations with reduced insulin biosynthesis have been reported. The importance of insulin gene mutation in the pathogenesis of diabetes will increase a great deal and give us a new understanding of β-cell biology and diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00100.x, 2011).
胰岛素基因的某些突变会导致高胰岛素血症或高胰岛素原血症。生物学上重要的氨基酸被替换会导致受体结合缺陷、半衰期延长和高胰岛素血症。已鉴定出三种突变胰岛素:(i)芝加哥胰岛素(F49L或苯丙氨酸B25亮氨酸);(ii)洛杉矶胰岛素(F48S或苯丙氨酸B24丝氨酸);(iii)和和歌山胰岛素(V92L或缬氨酸A3亮氨酸)。氨基酸的替换对于胰岛素原加工是必需的,这会导致高胰岛素原血症。已鉴定出四种类型:(i)普罗维登斯胰岛素原(H34D);(ii)东京胰岛素原(R89H);(iii)京都胰岛素原(R89L);以及(iv)牛津胰岛素原(R89P)。其中三种是加工位点突变。相比之下,普罗维登斯胰岛素原的突变被认为会导致分选异常。与正常胰岛素原相比,大量的普罗维登斯胰岛素原进入组成型途径,在该途径中不会发生加工。这些伴有高(原)胰岛素血症的胰岛素基因突变非常罕见,仅表现为轻度糖尿病或葡萄糖耐量异常,高(原)胰岛素血症是其诊断的关键。然而,在将胰岛素基因突变确定为新生儿糖尿病的病因后,这种情况发生了巨大变化。这类胰岛素基因突变不会表现出高(原)胰岛素血症。半胱氨酸残基处的突变或产生新的半胱氨酸会干扰正确的二硫键形成和正确构象,最终会导致错误折叠的胰岛素原积累、内质网应激和胰腺β细胞凋亡。也有报道称会出现青年发病的成年型糖尿病(MODY)或自身抗体阴性的1型糖尿病样表型。最近,还报道了胰岛素生物合成减少的隐性突变。胰岛素基因突变在糖尿病发病机制中的重要性将大大增加,并使我们对β细胞生物学和糖尿病有新的认识。(《糖尿病研究杂志》,doi: 10.1111/j.2040 - 1124.2011.00100.x,2011年)