Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
Curr Diab Rep. 2022 Feb;22(2):85-94. doi: 10.1007/s11892-022-01447-2. Epub 2022 Feb 4.
Diabetes mellitus (DM) due to toxic misfolding of proinsulin variants provides a monogenic model of endoplasmic reticulum (ER) stress. The mutant proinsulin syndrome (also designated MIDY; Mutant INS-gene-induced Diabetes of Youth or Maturity-onset diabetes of the young 10 (MODY10)) ordinarily presents as permanent neonatal-onset DM, but specific amino-acid substitutions may also present later in childhood or adolescence. This review highlights structural mechanisms of proinsulin folding as inferred from phenotype-genotype relationships.
MIDY mutations most commonly add or remove a cysteine, leading to a variant polypeptide containing an odd number of thiol groups. Such variants are associated with aberrant intermolecular disulfide pairing, ER stress, and neonatal β-cell dysfunction. Non-cysteine-related (NCR) mutations (occurring in both the B and A domains of proinsulin) define distinct determinants of foldability and vary in severity. The range of ages of onset, therefore, reflects a "molecular rheostat" connecting protein biophysics to quality-control ER checkpoints. Because in most mammalian cell lines even wild-type proinsulin exhibits limited folding efficiency, molecular barriers to folding uncovered by NCR MIDY mutations may pertain to β-cell dysfunction in non-syndromic type 2 DM due to INS-gene overexpression in the face of peripheral insulin resistance. Recent studies of MIDY mutations and related NCR variants, combining molecular and cell-based approaches, suggest that proinsulin has evolved at the edge of non-foldability. Chemical protein synthesis promises to enable comparative studies of "non-foldable" proinsulin variants to define key steps in wild-type biosynthesis. Such studies may create opportunities for novel therapeutic approaches to non-syndromic type 2 DM.
由于胰岛素原变体的毒性错误折叠导致的糖尿病(DM)提供了内质网(ER)应激的单基因模型。突变型胰岛素原综合征(也称为 MIDY;突变 INS 基因诱导的青少年糖尿病或青少年发病的成年型糖尿病 10(MODY10))通常表现为永久性新生儿发病的糖尿病,但特定的氨基酸取代也可能在儿童或青少年后期出现。本综述重点介绍了从表型-基因型关系推断出的胰岛素原折叠的结构机制。
MIDY 突变最常见的是添加或去除半胱氨酸,导致含有奇数个巯基的变体多肽。这种变体与异常的分子间二硫键配对、ER 应激和新生儿β细胞功能障碍有关。非半胱氨酸相关(NCR)突变(发生在胰岛素原的 B 和 A 结构域中)定义了折叠能力的不同决定因素,其严重程度也不同。因此,发病年龄范围反映了将蛋白质生物物理学与质量控制 ER 检查点连接起来的“分子变阻器”。由于在大多数哺乳动物细胞系中,即使是野生型胰岛素原的折叠效率也有限,因此 NCR MIDY 突变揭示的折叠障碍分子可能与由于 INS 基因在周围胰岛素抵抗的情况下过度表达而导致的非综合征 2 型 DM 中的β细胞功能障碍有关。最近对 MIDY 突变和相关 NCR 变体的研究,结合了分子和基于细胞的方法,表明胰岛素原在非折叠能力的边缘进化。化学蛋白质合成有望使“不可折叠”的胰岛素原变体的比较研究能够定义野生型生物合成中的关键步骤。这些研究可能为非综合征 2 型 DM 的新型治疗方法创造机会。