Suppr超能文献

一种解决生存分析中选择偏倚的方法。

An approach to addressing selection bias in survival analysis.

作者信息

Carlin Caroline S, Solid Craig A

机构信息

Medica Research Institute, Minnetonka, MN, U.S.A.

出版信息

Stat Med. 2014 Oct 15;33(23):4073-86. doi: 10.1002/sim.6211. Epub 2014 May 20.

Abstract

This work proposes a frailty model that accounts for non-random treatment assignment in survival analysis. Using Monte Carlo simulation, we found that estimated treatment parameters from our proposed endogenous selection survival model (esSurv) closely parallel the consistent two-stage residual inclusion (2SRI) results, while offering computational and interpretive advantages. The esSurv method greatly enhances computational speed relative to 2SRI by eliminating the need for bootstrapped standard errors and generally results in smaller standard errors than those estimated by 2SRI. In addition, esSurv explicitly estimates the correlation of unobservable factors contributing to both treatment assignment and the outcome of interest, providing an interpretive advantage over the residual parameter estimate in the 2SRI method. Comparisons with commonly used propensity score methods and with a model that does not account for non-random treatment assignment show clear bias in these methods, which is not mitigated by increased sample size. We illustrate using actual dialysis patient data comparing mortality of patients with mature arteriovenous grafts for venous access to mortality of patients with grafts placed but not yet ready for use at the initiation of dialysis. We find strong evidence of endogeneity (with estimate of correlation in unobserved factors ρ^=0.55) and estimate a mature-graft hazard ratio of 0.197 in our proposed method, with a similar 0.173 hazard ratio using 2SRI. The 0.630 hazard ratio from a frailty model without a correction for the non-random nature of treatment assignment illustrates the importance of accounting for endogeneity.

摘要

本研究提出了一种在生存分析中考虑非随机治疗分配的脆弱性模型。通过蒙特卡洛模拟,我们发现,从我们提出的内生选择生存模型(esSurv)估计的治疗参数与一致的两阶段残差包含法(2SRI)的结果非常相似,同时具有计算和解释方面的优势。相对于2SRI,esSurv方法通过消除对自抽样标准误的需求,极大地提高了计算速度,并且通常会得到比2SRI估计的标准误更小的标准误。此外,esSurv明确估计了导致治疗分配和感兴趣结果的不可观测因素之间的相关性,与2SRI方法中的残差参数估计相比,具有解释上的优势。与常用的倾向得分方法以及未考虑非随机治疗分配的模型进行比较,结果显示这些方法存在明显偏差,且样本量增加并不能减轻这种偏差。我们使用实际透析患者数据进行说明,比较了具有成熟动静脉移植物用于静脉通路的患者的死亡率与在透析开始时已植入但尚未准备好使用的移植物患者的死亡率。我们发现了很强的内生性证据(未观测因素相关性估计值ρ^ = 0.55),在我们提出的方法中估计的成熟移植物风险比为0.197,使用2SRI时的风险比类似,为0.173。未对治疗分配的非随机性质进行校正的脆弱性模型得出的风险比为0.630,这说明了考虑内生性的重要性。

相似文献

1
An approach to addressing selection bias in survival analysis.一种解决生存分析中选择偏倚的方法。
Stat Med. 2014 Oct 15;33(23):4073-86. doi: 10.1002/sim.6211. Epub 2014 May 20.
10
Dialysis modality and outcomes in kidney transplant recipients.肾移植受者的透析模式和结局。
Clin J Am Soc Nephrol. 2012 Feb;7(2):332-41. doi: 10.2215/CJN.07110711. Epub 2011 Dec 8.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验