Suppr超能文献

一项比较医生与模型对肺癌患者治疗结果预测的前瞻性研究:迈向个性化医疗和共同决策的一步。

A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making.

作者信息

Oberije Cary, Nalbantov Georgi, Dekker Andre, Boersma Liesbeth, Borger Jacques, Reymen Bart, van Baardwijk Angela, Wanders Rinus, De Ruysscher Dirk, Steyerberg Ewout, Dingemans Anne-Marie, Lambin Philippe

机构信息

Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.

Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands.

出版信息

Radiother Oncol. 2014 Jul;112(1):37-43. doi: 10.1016/j.radonc.2014.04.012. Epub 2014 May 17.

Abstract

BACKGROUND

Decision Support Systems, based on statistical prediction models, have the potential to change the way medicine is being practiced, but their application is currently hampered by the astonishing lack of impact studies. Showing the theoretical benefit of using these models could stimulate conductance of such studies. In addition, it would pave the way for developing more advanced models, based on genomics, proteomics and imaging information, to further improve the performance of the models.

PURPOSE

In this prospective single-center study, previously developed and validated statistical models were used to predict the two-year survival (2yrS), dyspnea (DPN), and dysphagia (DPH) outcomes for lung cancer patients treated with chemo radiation. These predictions were compared to probabilities provided by doctors and guideline-based recommendations currently used. We hypothesized that model predictions would significantly outperform predictions from doctors.

MATERIALS AND METHODS

Experienced radiation oncologists (ROs) predicted all outcomes at two timepoints: (1) after the first consultation of the patient, and (2) after the radiation treatment plan was made. Differences in the performances of doctors and models were assessed using Area Under the Curve (AUC) analysis.

RESULTS

A total number of 155 patients were included. At timepoint #1 the differences in AUCs between the ROs and the models were 0.15, 0.17, and 0.20 (for 2yrS, DPN, and DPH, respectively), with p-values of 0.02, 0.07, and 0.03. Comparable differences at timepoint #2 were not statistically significant due to the limited number of patients. Comparison to guideline-based recommendations also favored the models.

CONCLUSION

The models substantially outperformed ROs' predictions and guideline-based recommendations currently used in clinical practice. Identification of risk groups on the basis of the models facilitates individualized treatment, and should be further investigated in clinical impact studies.

摘要

背景

基于统计预测模型的决策支持系统有可能改变医学实践方式,但目前其应用因缺乏令人惊讶的影响研究而受阻。展示使用这些模型的理论益处可能会刺激此类研究的开展。此外,这将为基于基因组学、蛋白质组学和成像信息开发更先进的模型铺平道路,以进一步提高模型的性能。

目的

在这项前瞻性单中心研究中,使用先前开发并验证的统计模型来预测接受化疗放疗的肺癌患者的两年生存率(2yrS)、呼吸困难(DPN)和吞咽困难(DPH)结果。将这些预测与医生提供的概率以及当前使用的基于指南的建议进行比较。我们假设模型预测将显著优于医生的预测。

材料与方法

经验丰富的放射肿瘤学家(ROs)在两个时间点预测所有结果:(1)在患者首次咨询后,以及(2)在制定放射治疗计划后。使用曲线下面积(AUC)分析评估医生和模型性能的差异。

结果

共纳入155例患者。在时间点#1,ROs与模型之间的AUC差异分别为0.15、0.17和0.20(分别针对2yrS、DPN和DPH),p值分别为0.02、0.07和0.03。由于患者数量有限,时间点#2的可比差异无统计学意义。与基于指南的建议的比较也有利于模型。

结论

这些模型在很大程度上优于目前临床实践中使用的ROs预测和基于指南的建议。基于模型识别风险组有助于个体化治疗,应在临床影响研究中进一步研究。

相似文献

4
Dose-volume toxicity modeling for de-intensified chemo-radiation therapy for HPV-positive oropharynx cancer.
Radiother Oncol. 2017 Aug;124(2):240-247. doi: 10.1016/j.radonc.2017.06.020. Epub 2017 Jul 13.
5
From reactive to proactive tube feeding during chemoradiotherapy for head and neck cancer: A clinical prediction model-based approach.
Oral Oncol. 2019 Jan;88:172-179. doi: 10.1016/j.oraloncology.2018.11.031. Epub 2018 Dec 7.
6
Predicting Radiation Esophagitis Using 18F-FDG PET During Chemoradiotherapy for Locally Advanced Non-Small Cell Lung Cancer.
J Thorac Oncol. 2016 Feb;11(2):213-21. doi: 10.1016/j.jtho.2015.10.006. Epub 2015 Dec 22.
9
NTCP model validation method for DAHANCA patient selection of protons versus photons in head and neck cancer radiotherapy.
Acta Oncol. 2019 Oct;58(10):1410-1415. doi: 10.1080/0284186X.2019.1654129. Epub 2019 Aug 21.

引用本文的文献

1
3
Machine Learning to Predict Outcomes of Fetal Cardiac Disease: A Pilot Study.
Pediatr Cardiol. 2025 Apr;46(4):895-901. doi: 10.1007/s00246-024-03512-x. Epub 2024 May 9.
6
ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers.
Breast Cancer (Dove Med Press). 2023 Aug 15;15:625-636. doi: 10.2147/BCTT.S418376. eCollection 2023.
7
deepPERFECT: Novel Deep Learning CT Synthesis Method for Expeditious Pancreatic Cancer Radiotherapy.
Cancers (Basel). 2023 Jun 5;15(11):3061. doi: 10.3390/cancers15113061.

本文引用的文献

1
Acute phase response before treatment predicts radiation esophagitis in non-small cell lung cancer.
Radiother Oncol. 2014 Mar;110(3):493-8. doi: 10.1016/j.radonc.2014.01.009. Epub 2014 Feb 20.
2
Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients.
Radiother Oncol. 2013 Oct;109(1):100-6. doi: 10.1016/j.radonc.2013.08.035. Epub 2013 Sep 14.
3
Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach.
Radiother Oncol. 2013 Jun;107(3):267-73. doi: 10.1016/j.radonc.2013.05.007. Epub 2013 Jun 5.
4
Prognosis Research Strategy (PROGRESS) 3: prognostic model research.
PLoS Med. 2013;10(2):e1001381. doi: 10.1371/journal.pmed.1001381. Epub 2013 Feb 5.
7
Predicting outcomes in radiation oncology--multifactorial decision support systems.
Nat Rev Clin Oncol. 2013 Jan;10(1):27-40. doi: 10.1038/nrclinonc.2012.196. Epub 2012 Nov 20.
8
Life expectancy estimation in prostate cancer patients.
Can Urol Assoc J. 2012 Oct;6(5):374-5. doi: 10.5489/cuaj.12275.
9
Biological mechanisms of normal tissue damage: importance for the design of NTCP models.
Radiother Oncol. 2012 Oct;105(1):79-85. doi: 10.1016/j.radonc.2012.05.008. Epub 2012 Jun 29.
10
Independent and functional validation of a multi-tumour-type proliferation signature.
Br J Cancer. 2012 Jul 24;107(3):508-15. doi: 10.1038/bjc.2012.269. Epub 2012 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验