Upadhaya Taman, Chetty Indrin J, McKenzie Elizabeth M, Bagher-Ebadian Hassan, Atkins Katelyn M
Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, 90048, United States.
Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, 48202, United States.
BJR Open. 2024 Nov 6;6(1):tzae038. doi: 10.1093/bjro/tzae038. eCollection 2024 Jan.
To apply CT-based foundational artificial intelligence (AI) and radiomics models for predicting overall survival (OS) for patients with locally advanced non-small cell lung cancer (NSCLC).
Data for 449 patients retrospectively treated on the NRG Oncology/Radiation Therapy Oncology Group (RTOG) 0617 clinical trial were analyzed. Foundational AI, radiomics, and clinical features were evaluated using univariate cox regression and correlational analyses to determine independent predictors of survival. Several models were fit using these predictors and model performance was evaluated using nested cross-validation and unseen independent test datasets via area under receiver-operator-characteristic curves, AUCs.
For all patients, the combined foundational AI and clinical models achieved AUCs of 0.67 for the Random Forest (RF) model. The combined radiomics and clinical models achieved RF AUCs of 0.66. In the low-dose arm, foundational AI alone achieved AUC of 0.67, while AUC for the ensemble radiomics and clinical models was 0.65 for the support vector machine (SVM). In the high-dose arm, AUC values were 0.67 for combined radiomics and clinical models and 0.66 for the foundational AI model.
This study demonstrated encouraging results for application of foundational AI and radiomics models for prediction of outcomes. More research is warranted to understand the value of ensemble models toward improving performance via complementary information.
Using foundational AI and radiomics-based models we were able to identify significant signatures of outcomes for NSCLC patients retrospectively treated on a national cooperative group clinical trial. Associated models will be important for application toward prospective patients.
应用基于CT的基础人工智能(AI)和放射组学模型预测局部晚期非小细胞肺癌(NSCLC)患者的总生存期(OS)。
对在NRG肿瘤学/放射治疗肿瘤学组(RTOG)0617临床试验中接受回顾性治疗的449例患者的数据进行分析。使用单变量cox回归和相关性分析评估基础AI、放射组学和临床特征,以确定生存的独立预测因素。使用这些预测因素拟合多个模型,并通过接受者操作特征曲线下面积(AUC),使用嵌套交叉验证和未见独立测试数据集评估模型性能。
对于所有患者,基础AI和临床联合模型在随机森林(RF)模型中的AUC为0.67。放射组学和临床联合模型的RF AUC为0.66。在低剂量组,单独的基础AI的AUC为0.67,而放射组学和临床联合模型在支持向量机(SVM)中的AUC为0.65。在高剂量组,放射组学和临床联合模型的AUC值为0.67,基础AI模型的AUC值为0.66。
本研究证明了基础AI和放射组学模型在预测结果方面的应用取得了令人鼓舞的结果。有必要进行更多研究,以了解联合模型通过补充信息提高性能的价值。
使用基于基础AI和放射组学的模型,我们能够在一项全国合作组临床试验中回顾性治疗的NSCLC患者中识别出显著的预后特征。相关模型对前瞻性患者的应用将具有重要意义。