Suppr超能文献

基于CT的基础人工智能和放射组学模型在预测接受NRG/RTOG 0617临床试验的肺癌患者生存率中的应用。

Application of CT-based foundational artificial intelligence and radiomics models for prediction of survival for lung cancer patients treated on the NRG/RTOG 0617 clinical trial.

作者信息

Upadhaya Taman, Chetty Indrin J, McKenzie Elizabeth M, Bagher-Ebadian Hassan, Atkins Katelyn M

机构信息

Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, 90048, United States.

Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, 48202, United States.

出版信息

BJR Open. 2024 Nov 6;6(1):tzae038. doi: 10.1093/bjro/tzae038. eCollection 2024 Jan.

Abstract

OBJECTIVES

To apply CT-based foundational artificial intelligence (AI) and radiomics models for predicting overall survival (OS) for patients with locally advanced non-small cell lung cancer (NSCLC).

METHODS

Data for 449 patients retrospectively treated on the NRG Oncology/Radiation Therapy Oncology Group (RTOG) 0617 clinical trial were analyzed. Foundational AI, radiomics, and clinical features were evaluated using univariate cox regression and correlational analyses to determine independent predictors of survival. Several models were fit using these predictors and model performance was evaluated using nested cross-validation and unseen independent test datasets via area under receiver-operator-characteristic curves, AUCs.

RESULTS

For all patients, the combined foundational AI and clinical models achieved AUCs of 0.67 for the Random Forest (RF) model. The combined radiomics and clinical models achieved RF AUCs of 0.66. In the low-dose arm, foundational AI alone achieved AUC of 0.67, while AUC for the ensemble radiomics and clinical models was 0.65 for the support vector machine (SVM). In the high-dose arm, AUC values were 0.67 for combined radiomics and clinical models and 0.66 for the foundational AI model.

CONCLUSIONS

This study demonstrated encouraging results for application of foundational AI and radiomics models for prediction of outcomes. More research is warranted to understand the value of ensemble models toward improving performance via complementary information.

ADVANCES IN KNOWLEDGE

Using foundational AI and radiomics-based models we were able to identify significant signatures of outcomes for NSCLC patients retrospectively treated on a national cooperative group clinical trial. Associated models will be important for application toward prospective patients.

摘要

目的

应用基于CT的基础人工智能(AI)和放射组学模型预测局部晚期非小细胞肺癌(NSCLC)患者的总生存期(OS)。

方法

对在NRG肿瘤学/放射治疗肿瘤学组(RTOG)0617临床试验中接受回顾性治疗的449例患者的数据进行分析。使用单变量cox回归和相关性分析评估基础AI、放射组学和临床特征,以确定生存的独立预测因素。使用这些预测因素拟合多个模型,并通过接受者操作特征曲线下面积(AUC),使用嵌套交叉验证和未见独立测试数据集评估模型性能。

结果

对于所有患者,基础AI和临床联合模型在随机森林(RF)模型中的AUC为0.67。放射组学和临床联合模型的RF AUC为0.66。在低剂量组,单独的基础AI的AUC为0.67,而放射组学和临床联合模型在支持向量机(SVM)中的AUC为0.65。在高剂量组,放射组学和临床联合模型的AUC值为0.67,基础AI模型的AUC值为0.66。

结论

本研究证明了基础AI和放射组学模型在预测结果方面的应用取得了令人鼓舞的结果。有必要进行更多研究,以了解联合模型通过补充信息提高性能的价值。

知识进展

使用基于基础AI和放射组学的模型,我们能够在一项全国合作组临床试验中回顾性治疗的NSCLC患者中识别出显著的预后特征。相关模型对前瞻性患者的应用将具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8edb/11576354/896f67a03231/tzae038f1.jpg

相似文献

引用本文的文献

本文引用的文献

1
BrainSegFounder: Towards 3D foundation models for neuroimage segmentation.
Med Image Anal. 2024 Oct;97:103301. doi: 10.1016/j.media.2024.103301. Epub 2024 Aug 8.
2
Foundation model for cancer imaging biomarkers.
Nat Mach Intell. 2024;6(3):354-367. doi: 10.1038/s42256-024-00807-9. Epub 2024 Mar 15.
3
Vision-Language Models for Vision Tasks: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2024 Aug;46(8):5625-5644. doi: 10.1109/TPAMI.2024.3369699. Epub 2024 Jul 2.
4
Segment anything in medical images.
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
6
The Promise and Future of Radiomics for Personalized Radiotherapy Dosing and Adaptation.
Semin Radiat Oncol. 2023 Jul;33(3):252-261. doi: 10.1016/j.semradonc.2023.03.003.
7
Left Anterior Descending Coronary Artery Radiation Dose Association With All-Cause Mortality in NRG Oncology Trial RTOG 0617.
Int J Radiat Oncol Biol Phys. 2023 Apr 1;115(5):1138-1143. doi: 10.1016/j.ijrobp.2022.11.033. Epub 2022 Nov 24.
9
A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies.
J Nucl Med. 2022 Feb;63(2):172-179. doi: 10.2967/jnumed.121.262464. Epub 2021 Sep 16.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验