Leibniz Institute of Photonic Technology , Jena, Germany.
Anal Chem. 2014 Jun 3;86(11):5278-85. doi: 10.1021/ac404162w. Epub 2014 May 20.
Versatile multigas analysis bears high potential for environmental sensing of climate relevant gases and noninvasive early stage diagnosis of disease states in human breath. In this contribution, a fiber-enhanced Raman spectroscopic (FERS) analysis of a suite of climate relevant atmospheric gases is presented, which allowed for reliable quantification of CH4, CO2, and N2O alongside N2 and O2 with just one single measurement. A highly improved analytical sensitivity was achieved, down to a sub-parts per million limit of detection with a high dynamic range of 6 orders of magnitude and within a second measurement time. The high potential of FERS for the detection of disease markers was demonstrated with the analysis of 27 nL of exhaled human breath. The natural isotopes (13)CO2 and (14)N(15)N were quantified at low levels, simultaneously with the major breath components N2, O2, and (12)CO2. The natural abundances of (13)CO2 and (14)N(15)N were experimentally quantified in very good agreement to theoretical values. A fiber adapter assembly and gas filling setup was designed for rapid and automated analysis of multigas compositions and their fluctuations within seconds and without the need for optical readjustment of the sensor arrangement. On the basis of the abilities of such miniaturized FERS system, we expect high potential for the diagnosis of clinically administered (13)C-labeled CO2 in human breath and also foresee high impact for disease detection via biologically vital nitrogen compounds.
多功能多气体分析在环境中对气候相关气体的传感以及对人体呼吸中疾病状态的非侵入性早期诊断方面具有巨大的潜力。在本研究中,我们提出了一种纤维增强拉曼光谱(FERS)分析套件,用于分析一系列气候相关的大气气体,仅通过一次测量即可可靠地定量分析 CH4、CO2 和 N2O 以及 N2 和 O2。实现了高度改善的分析灵敏度,检测限低至亚ppm 级,动态范围高达 6 个数量级,测量时间仅为 1 秒。通过对 27 nL 呼出的人体呼吸样本的分析,证明了 FERS 对疾病标志物检测的巨大潜力。(13)CO2 和(14)N(15)N 的天然同位素以低水平被同时定量分析,同时定量分析了 N2、O2 和(12)CO2 等主要呼吸成分。(13)CO2 和(14)N(15)N 的天然丰度与理论值吻合良好。设计了一种纤维适配器组件和气体填充装置,用于在几秒钟内快速自动分析多气体成分及其波动,而无需对传感器布置进行光学调整。基于这种小型化 FERS 系统的能力,我们预计它在诊断临床上施用的(13)C 标记 CO2 在人体呼吸中的应用具有很大的潜力,并且还可以预见它在通过生物重要的氮化合物进行疾病检测方面的重大影响。