Suppr超能文献

目前的自动化 3D 细胞检测方法并不适合替代手动体视学细胞计数。

Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting.

机构信息

Department of Neuroanatomy, Ludwig-Maximilians-University of Munich Munich, Germany.

MBF Bioscience Williston, VT, USA.

出版信息

Front Neuroanat. 2014 May 7;8:27. doi: 10.3389/fnana.2014.00027. eCollection 2014.

Abstract

Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) "cell counting" approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.

摘要

体视学细胞计数对神经科学领域产生了重大影响。体视学细胞计数的一个主要瓶颈是,用户必须通过在每个研究的大脑或脑区的数百个显微镜视场范围内进行的三维(3D)体视学计数规则的视觉检查,手动决定是否对每个细胞进行计数。依赖于视觉检查使得体视学细胞计数非常耗费人力和时间,这也是有偏差的、非体视学的二维(2D)“细胞计数”方法仍然广泛使用的主要原因。我们评估了现代自动化细胞检测和分割算法的性能,作为体视学细胞计数中手动方法的潜在替代方法。本研究使用的图像数据是用各种常用的核和细胞质染色剂制备的厚脑组织切片的 3D 显微镜图像。该评估将专家观察者通过明确识别和全面计数的细胞数量和位置与通过三种自动 3D 细胞检测算法找到的细胞数量和位置进行了比较:来自 FARSIGHT 工具包的核分割、3D 多水平集方法的核分割以及 ImageJ 的 3D 对象计数器插件。在这些方法中,FARSIGHT 的性能最好,真阳性检测率在 38%至 99%之间,假阳性率在 3.6%至 82%之间。结果表明,目前的自动化方法的检测率较低,假阳性率较高,无法获得细胞数量的有效估计。因此,目前,根据无偏体视学计数规则手动进行对象包含的体视学细胞计数仍然是组织切片中无偏细胞定量的唯一充分方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d00/4019880/237acff481dc/fnana-08-00027-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验