Department of Computer Science and Engineering, University of South Florida, Tampa, FL, 33620, USA.
Department of Computer Science and Engineering, University of South Florida, Tampa, FL, 33620, USA.
J Chem Neuroanat. 2022 Oct;124:102134. doi: 10.1016/j.jchemneu.2022.102134. Epub 2022 Jul 15.
Stereology-based methods provide the current state-of-the-art approaches for accurate quantification of numbers and other morphometric parameters of biological objects in stained tissue sections. The advent of artificial intelligence (AI)-based deep learning (DL) offers the possibility of improving throughput by automating the collection of stereology data. We have recently shown that DL can effectively achieve comparable accuracy to manual stereology but with higher repeatability, improved throughput, and less variation due to human factors by quantifying the total number of immunostained cells at their maximal profile of focus in extended depth of field (EDF) images. In the first of two novel contributions in this work, we propose a semi-automatic approach using a handcrafted Adaptive Segmentation Algorithm (ASA) to automatically generate ground truth on EDF images for training our deep learning (DL) models to automatically count cells using unbiased stereology methods. This update increases the amount of training data, thereby improving the accuracy and efficiency of automatic cell counting methods, without a requirement for extra expert time. The second contribution of this work is a Multi-channel Input and Multi-channel Output (MIMO) method using a U-Net deep learning architecture for automatic cell counting in a stack of z-axis images (also known as disector stacks). This DL-based digital automation of the ordinary optical fractionator ensures accurate counts through spatial separation of stained cells in the z-plane, thereby avoiding false negatives from overlapping cells in EDF images without the shortcomings of 3D and recurrent DL models. The contribution overcomes the issue of under-counting errors with EDF images due to overlapping cells in the z-plane (masking). We demonstrate the practical applications of these advances with automatic disector-based estimates of the total number of NeuN-immunostained neurons in a mouse neocortex. In summary, this work provides the first demonstration of automatic estimation of a total cell number in tissue sections using a combination of deep learning and the disector-based optical fractionator method.
体视学方法为准确量化染色组织切片中生物物体的数量和其他形态参数提供了当前最先进的方法。人工智能(AI)为基础的深度学习(DL)的出现提供了通过自动化体视学数据收集来提高通量的可能性。我们最近表明,DL 可以有效地实现与手动体视学相当的准确性,但具有更高的可重复性、更高的通量,并且由于人为因素的变化更小,通过在扩展景深(EDF)图像中聚焦的最大轮廓处量化免疫染色细胞的总数来实现。在这项工作中的两个新颖贡献中的第一个中,我们提出了一种使用手工制作的自适应分割算法(ASA)的半自动方法,以自动生成 EDF 图像上的真实数据,以便使用无偏体视学方法对我们的深度学习(DL)模型进行自动细胞计数。此更新增加了训练数据量,从而提高了自动细胞计数方法的准确性和效率,而无需额外的专家时间。这项工作的第二个贡献是一种多通道输入和多通道输出(MIMO)方法,使用 U-Net 深度学习架构在 z 轴图像堆栈(也称为分割器堆栈)中自动进行细胞计数。这种基于 DL 的普通光学分割器的数字自动化确保了通过在 z 平面上分离染色细胞来进行准确计数,从而避免了由于 EDF 图像中细胞重叠而导致的假阴性,而没有 3D 和递归 DL 模型的缺点。该贡献克服了由于 z 平面上的细胞重叠(掩蔽)而导致 EDF 图像计数不足的问题。我们通过自动基于分割器的估计来证明这些进展在小鼠新皮层中 NeuN 免疫染色神经元总数的实际应用。总之,这项工作首次展示了使用深度学习和分割器基于光学分割器方法的组合自动估计组织切片中总细胞数的方法。