1] Department of Pediatrics, Stanford University School of Medicine, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, California 94305, USA [3].
1] Department of Biology, Stanford University, California 94305, USA [2].
Nature. 2014 Jun 12;510(7504):283-7. doi: 10.1038/nature13320. Epub 2014 May 21.
Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.
赖氨酸甲基化信号的失调已成为癌症发病机制中的一个常见病因,几种组蛋白赖氨酸甲基转移酶(KMT)抑制剂已被开发为化学疗法药物。大量存在于细胞质中的 KMT SMYD3(SET 和 MYND 结构域蛋白 3)在许多人类肿瘤中过表达。然而,SMYD3 调节癌症途径的分子机制及其与体内肿瘤发生的关系在很大程度上尚不清楚。在这里,我们表明 SMYD3 对 MAP3K2 的甲基化增加了 MAP 激酶信号,并促进了 Ras 驱动的腺癌的形成。使用胰腺导管腺癌和肺腺癌的小鼠模型,我们发现消除 SMYD3 的催化活性可抑制致癌性 Ras 对肿瘤发展的影响。我们使用蛋白质阵列技术鉴定了 MAP3K2 激酶作为 SMYD3 的靶标。在癌细胞系中,SMYD3 介导的 MAP3K2 赖氨酸 260 甲基化增强了 Ras/Raf/MEK/ERK 信号模块的激活,并且 SMYD3 耗竭与 MEK 抑制剂协同作用以阻断 Ras 驱动的肿瘤发生。最后,PP2A 磷酸酶复合物是 MAP 激酶途径的关键负调节剂,与 MAP3K2 结合,并且这种相互作用被甲基化所阻断。总之,我们的研究结果阐明了赖氨酸甲基化在整合细胞质激酶信号级联中的新作用,并确立了 SMYD3 在调节致癌性 Ras 信号中的关键作用。