Gebhardt Paul, Pattinson Sebastian W, Ren Zhibin, Cooke David J, Elliott James A, Eder Dominik
Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Correnstrasse 28/30, Münster, 48149, Germany.
Nanoscale. 2014 Jul 7;6(13):7319-24. doi: 10.1039/c4nr00320a.
Achieving control over the morphology of zeolite crystals at the nanoscale is crucial for enhancing their performance in diverse applications including catalysis, sensors and separation. The complexity and sensitivity of zeolite synthesis processes, however, often make such control both highly empirical and difficult to implement. We demonstrate that graphene can significantly alter the morphology of titanium silicalite (TS-1) particles, in particular being able to reduce their dimensions from several hundreds to less than 10 nm. Through electron microscopy and molecular mechanics simulations we propose a mechanism for this change based on the preferential interaction of specific TS-1 surfaces with benzyl-alcohol-mediated graphene. These findings suggest a facile new means of controlling the zeolite morphology and thereby also further demonstrate the potential of graphene in hybrid materials. Moreover, the generality of the mechanism points the way to a new avenue of research in using two-dimensional materials to engineer functional inorganic crystals.
在纳米尺度上实现对沸石晶体形态的控制对于提高其在催化、传感器和分离等多种应用中的性能至关重要。然而,沸石合成过程的复杂性和敏感性常常使这种控制高度依赖经验且难以实施。我们证明,石墨烯可以显著改变钛硅沸石(TS-1)颗粒的形态,特别是能够将其尺寸从几百纳米减小到小于10纳米。通过电子显微镜和分子力学模拟,我们基于特定TS-1表面与苄醇介导的石墨烯之间的优先相互作用,提出了这种变化的机制。这些发现表明了一种控制沸石形态的简便新方法,从而也进一步证明了石墨烯在混合材料中的潜力。此外,该机制的普遍性为利用二维材料设计功能性无机晶体开辟了一条新的研究途径。