Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States.
Biochemistry. 2014 Jun 3;53(21):3467-75. doi: 10.1021/bi5003184. Epub 2014 May 22.
Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs over long distances through the π-stacked bases and leads to the oxidative dissociation of p53. The extent of protein dissociation depends upon the redox potential of the DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using oligonucleotides containing both synthetic and human p53 consensus sequences with an appended photooxidant, anthraquinone. Greater p53 dissociation is observed from sequences containing low-redox potential purine regions, particularly guanine triplets. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites corresponding to sites of preferred electron hole localization were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets. Oxidative DNA damage is inhibited in the presence of p53, but only at sites in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress as well as possible biological implications have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.
转录因子 p53 是人类癌症中最常发生改变的基因。作为一种直接与 DNA 接触的氧化还原活性蛋白,p53 可以通过 DNA 介导的电荷传输直接感知氧化应激。电子空穴通过 π 堆积的碱基长距离传输,并导致 p53 的氧化解离。蛋白质解离的程度取决于与每个 p53 单体直接接触的 DNA 的氧化还原电位。通过使用含有合成和人 p53 共有序列的寡核苷酸的电泳迁移率变动分析,研究了 p53 氧化解离的 DNA 序列依赖性,其中包含附加的光氧化剂蒽醌。从含有低氧化还原电位嘌呤区域的序列中观察到更大的 p53 解离,特别是鸟嘌呤三联体。通过对蒽醌修饰的 DNA 进行辐照的变性聚丙烯酰胺凝胶电泳,确定了对应于电子空穴优先定位部位的 DNA 损伤部位。产生的 DNA 损伤优先定位于鸟嘌呤二联体和三联体。在 p53 存在下,氧化 DNA 损伤受到抑制,但仅在与 p53 直接接触的部位受到抑制。根据这些数据,对人 p53 结合位点对氧化应激的敏感性以及可能的生物学意义做出了预测。基于我们的数据,每个 p53 结合位点的嘌呤区域内的鸟嘌呤模式决定了 p53 对 DNA 氧化的反应,对于某些序列,p53 从远处发生氧化解离,从而为细胞内 DNA 电荷传输化学提供了另一个潜在作用。